Lithogeochemistry of Pegmatites at Broken Hill: Vectors to Mineralisation

Glenn Coianiz: Exploris Pty Ltd
Chris Torrey: Silver City Minerals Limited
Important Disclaimer

This presentation is provided to you for the sole purpose of providing background technical, financial and other information to enable you to review the business activities of Silver City Minerals Limited (“Silver City”, “SCI” or the “Company”). This presentation contains forward looking statements concerning Silver City Minerals Limited. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company’s actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of, the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes. Forward looking statements in this document are based on Silver City’s beliefs, opinions and estimates of Silver City Minerals as of the dates the forward looking statements are made, and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future development. Nothing in this material should be construed as the solicitation of an offer to buy or sell SCI securities.

Competent Person

Information in this document that relates to Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Christopher Torrey, who is the Managing Director and full-time employee and shareholder of Silver City Minerals Limited, and a Member of the Australian Institute of Geoscientists. Mr Torrey has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the “Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves”. Mr Torrey consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.
ACKNOWLEDGEMENTS

Glenn Coianiz
Joel Fitzherbert
Phil Blevin

Erick Conaghan
Alison Dines
Peter White
OUTLINE

- Geological Framework
- Olarian Metamorphism
- Sampling Rationale
- Pegmatite Styles
- Geochemistry
- What we think
Stratigraphy
GEOCHRONOLOGY

Silts, black shales: deep marine, turbiditic: cap rocks, deep burial

RAPID SUBSIDENCE

quartzofeldspathic: shallow marine-shelf (maybe lacustrine)

Albitic, quartzofeldspathic: fluvial to estuarine

Stevens (2006)
GEOLOGY

- Rift sedimentation and volcanism (1850 to 1670Ma).
- Narrow Rift.
- Mineralisation 1685-1670Ma

- At least four deformations, two thermal events

Key units

2. Broken Hill Group: Ore host especially in upper parts.
5. Paragon Group: Carbonaceous shales, deeper marine,
Where did it start?

- Lithium
- Documented occurrences of Li minerals (amblygonite)
- GIS data indicates almost 10% of tenure area occupied by outcropping pegmatite
- 50% tenure under cover.
- Suggests pegmatite rock volume in district might be as much as 20%
PEGMATITES

- Provide a sample medium ubiquitous to the district
- Often the only outcropping rock in areas of sub-crop or cover
- Many more occurrences of pegmatite than mapped
- Are they products of anatexis and largely *in situ*?
- Are they allochthonous and intrusive?
Zone of Lithium-rich pegmatites
Broken Hill

Metamorphic Zone

Greenschist

Amphibolite

Decreasing temperature and pressure

Granulite

Mineral-rich sediments

Fault

Pegmatite

Granite

(Melting of Sediment)

Broken Hill Pegmatites
Schematic Model

Adapted by Silver City from Fitzherbert 2015, Cerny 1991 and Breaks et al 2003
METAMORPHISM

Olarian Orogeny: 1600 - 1580 Ma

Pegmatites: 1600-1590 Ma
Mundi Granite: 1590-1580 Ma

“In a regional sense some pegmatites appear to be large sill-like bodies which are stratabound”
Pegmatites stratabound?
“Due to the stratabound nature of the metamorphic field gradient there is also an association with metamorphic facies zones and isograds”….. (Fitzherbert 2015)
Metamorphic isograds generally conform with the stratigraphy.
Mineralogy documented to occur within pegmatites includes:
- amazonite (green lead-rich feldspar)
- zinc–rich micas
- sulphides.
SAMPLING

- Sample weight 2.5-3kg
- 2 objectives
 - Minerals
 - Representative
- Area sampled dependent on meeting objectives
- Range 5x5m to 50x50m
ANALYSIS

Lab
- ALS Orange
- 4 acid digest
- 48 element ICP-MS
- Representative sample

Scanner
- Minerals only
- XRF + 10mm window
- LIBZ < 5mm window
- Need flat surfaces
- No comparison with Lab
- Similar trends
- We had a go but data was largely inconclusive & not suitable
Pegmatite Type 1

- “Leucogranites"
- Fs-qtz in f.g. fs groundmass
- Fs + Qtz <2mm - <10mm
- Coarser sized accumulations
- Perthitic
- Musc +/- biotite, tourmaline, garnet
- Outcrop >50m
- Variable contacts
- Granite-like + coarse pegmatite segregations
- + Pb and Zn, - Cu
- +/- immobile + average or slightly depleted LCT.
Pegmatite Type 2

- Fs-Qtz-Musc
- Fs+ Qtz < 20cm – 30cm
- Musc <2cm – 5cm
- +/- Tour (≤10cm)
 Garnet ≤ 5cm
- Garnet to sediment contacts.
- Concordant and discordant
- <1-5m wide to 5-10+m long
- All units and facies
- + Pb, Zn, U and in many LCT elements
Pegmatite Type 3

- Qtz-Musc only
- Mapped Qtz veins
- Musc often green (Rb and Li-rich?)
- Waukeroo tin field
- < 2m wide +10m long
- Concordant, often sheared
- Tour locally abundant margins of pegmatites
- Host rocks intensely replaced by tourmaline, preserving fine sedimentary detail
- Freyers Metasediments, Hores Gneiss (Broken Hill Group), Sundown Group and Paragon Group
- + LCT elements + Cu & Zn, - Pb.
Pegmatite Type 4

- Zoned across + along strike
- Across - white, translucent Qtz core with Qtz + Fs + Musc on margins
- Along – Qtz vein to Qtz+FS+Musc pegmatite
- Qtz & Fs phenocrysts to 15cm
- <2m x 5m - 10m x 15m
- All units, concordant and cross-cutting
- Visually Type 2 but zoned and coarser
- - Pb, Ag, Zn, +/-Sn and Cs
Pegmatite Type 5

- White Fs dominant
- Fs crystals to 1.5m
- Qtz < 15%
- Musc + Gnt uncommon, Tour rare
- Recorded as beryl-bearing
- Discordant
- Locally offset suggesting earlier phase
- -- most elements except Ag, Co, Cr, Pb, Th, V and W.
Tin Deposits
Riddock

- + Ag, Pb, Mn, Zn
- Anomalous rock
- Little surface exploration
- Limited drilling
- Poor outcrop
- Complex geology

Silver distribution
+ Ag, Pb, Mn, Zn
Anomalous rock
Little surface exploration
Limited drilling
Poor outcrop
Complex geology

Lead distribution
Limestone

- + Ag, Pb, Mn
- Limited surface exploration
- No drilling
- Poor outcrop
- Some historical soil contamination - XRF
- Good correlation with geology

Silver distribution
- + Ag, Pb, Mn
- Limited surface exploration
- No drilling
- Poor outcrop
- Some historical soil contamination - XRF
- Good correlation with geology

Lead distribution
FRACTIONATION TRENDS

- Defined by K/Rb and K/Cs ratios
- Square = avg upper crust and North American Shale Composite
- Green - granulite, red – amphibolite, blue – greenschist
- Initial loss of Cs at granulite grade
- Single fractionation series
Elemental Fractionation

K/Rb : Cs ppm

K/Rb : Ga ppm

K/Rb : Li ppm

K/Rb : Nb ppm
Elemental Fractionation

K/Rb : P ppm

K/Rb : Ta ppm

K/Rb : Tl ppm

K/Rb : Sn ppm
Elemental Fractionation

K/Rb : Ag ppm

K/Rb : Cu ppm

K/Rb : Zn ppm

K/Rb : Pb ppm
Zone of Lithium-rich pegmatites
Broken Hill

Intrusive and allochthonous

Partial Melting

Broken Hill Pegmatites
Schematic Model
REFERENCES

