Mapping, magnetics and microscopes: Understanding the setting of VAMS mineralisation in the Ordovician Girilambone Group, western NSW

Phil Gilmore¹, Garry Davidson², Steve Trigg¹ and Lorraine Campbell¹
¹ Geological Survey of NSW
² University of Tasmania
Overview

• Location
• Why and what
• Geological overview
• Outcomes
• Genetic model
• Exploration guide
• Summary
Location

- Bourke
- Cobar
- Nyngan
- Tottenham
- Queanbeyan
Why and what

- Poor mapping resolution
 - Continue 100k mapping
- Cu-rich deposits (e.g. Tritton) poorly constrained
 - Syngenetic or orogenic?
- Multi-discipline
 - Mapping
 - Potential field modelling
 - Mineral systems study
 - Research project
 - M. Econ. Geology (CODES)
- Collaboration
 - Industry
 - Geoscience Australia

Source: Burton et al. 2012, Gilmore et al. in prep, Hegarty in prep
Geological overview

<table>
<thead>
<tr>
<th>Era</th>
<th>Age (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quat</td>
<td>1.8</td>
</tr>
<tr>
<td>Tert</td>
<td>65</td>
</tr>
<tr>
<td>Cret</td>
<td>144</td>
</tr>
<tr>
<td>Jur</td>
<td>206</td>
</tr>
<tr>
<td>Tri</td>
<td>248</td>
</tr>
<tr>
<td>Perm</td>
<td>299</td>
</tr>
<tr>
<td>Carb</td>
<td>359</td>
</tr>
<tr>
<td>Dev</td>
<td>385</td>
</tr>
<tr>
<td>Sil</td>
<td>423</td>
</tr>
<tr>
<td>Ord</td>
<td>461</td>
</tr>
</tbody>
</table>

Modern drainage
- Gravel, silcrete, basalt

Great Aust. Basin
- Midway granite

Tabberabberan Orogeny
- Mulga Downs Gp?

Cobar def'n?
- Cobar S-Gp

Benambran Orogeny
- Ballast Fm
- Long Fm

Girolambone Gp
- Narrana Fm

Source: Hegarty (in prep.), Burton et al. (2012), Gilmore et al. (in prep).
Geological overview

- Early Ordovician
 - Widespread extension
 - Back arc setting
- Turbidite deposition
- MORB-affinity mafic rocks

Source: Foster and Gray 2000

Source: Foster and Goscombe (2013), Geosciences 3 (3), Geoscience Australia – Shaping A Nation.
Mapping – turbidites

- Poor surface exposure ...
- Interbedded sandstone, siltstone and claystone
 - Minor chert horizons
- Thicker quartz-rich sand horizons
 - Same provenance as turbidites
 - Channel(s) across fan?
 - Metamorphosed to quartzite

- Metamorphosed – lower greenschist
- Deformed – asymmetric folding

1 Fraser et al. 2014
Mapping – biostratigraphy

- Conodonts in chert and siliceous siltstone

Thanks to Dr Ian Percival
Mapping – mafic rocks

- Basalts and mafic schists1,2
 - Ocean island basalts
 - Mid-ocean ridge basalt
- Ultramafic rocks3,4
 - ‘Alpine style’ harzburgite
 - ‘Alaskan style’ complexes

1 – Burton 2011, Burton 2014, Barron et al. 2007, Bruce 2013

Mines & Wines | Queanbeyan Bicentennial Hall, NSW | 2–4 September 2015
Mapping – silica-iron rocks

• More extensive than previously mapped
 – The ‘pink quartzite’ of Smith and Hopwood in the 1970s

• 3 things about them ...
 – Magnetic
 – Same deformation fabrics & geometry as surrounding turbidites
 – Look identical to those over ore zones
Mapping – structure

- Main deformation event was the Benambran Orogeny ~440 Ma
 - Ar-Ar evidence (Fergusson et al. 2005)
Mapping – potential field models

- Magnetic and gravity models (Hegarty 2013)
 - Known mafic rocks on margins of gravity highs
 - High density basement – a large mafic intrusion at 5km?

Hegarty (2013)
Mapping – summary

• Two packages of turbidites
 – Early Ordovician (Narrama Fm)
 • Mafic and ultramafic rocks
 • Coarser grained
 • Hosts mineralisation
 • Hosts silica-iron rocks
 – Magnetic
 • Chert and quartzite markers
 – Middle Ordovician (Ballast, Lang)
 • Finer grained

• Consistent structure regionally
 – F3 fold axis
Mineralisation

- Range of interps!
 - Syngenetic VAMS
 - 1970s, 2010s
 - Orogenic
 - 1990s, 2000s

- Tritton resources
 - 50 Mt @ 2% Cu\(^1\)
 - >755 000t Cu

- Mined and identified resources\(^2\)

- ‘Very large’ deposit on global VAMS scale\(^3\)

1 - Jones 2012, 2 - Straits 2012, 3 – Galley et al. 2007

Mines & Wines | Queanbeyan Bicentennial Hall, NSW
Mineralisation – consistent features

• Host
 – Turbiditic metasedimentary rocks

• Footwall
 – Mafic schist (ex-basalt) and sills
 – MORB-affinity \(^1,2\)

• Hangingwall
 – Silica-iron rocks overlie ore
 – Mass flow with massive sulfide clasts at Tritton \(^3\)

1 - Burton 2011, 2 – Burton 2014, 3 - Jones 2012
Mineralisation – consistent features

- Mineralisation
 - Massive sulfide (cpy–py) zone
 - Pyrite-rich banded zone
 - Sub-economic veins in FW
 - Cu rich (elevated Au, Zn, Ag)

- Zoned alteration
 - Proximal Fe- to distal Mg-chlorite in FW
 - Silicification of the ore zone
 - Carbonate-altered HW

1 - Jones 2012

Mineralisation – consistent features

Deformation

• Mineralisation deformed the same as turbidites
 – i.e. mineralisation predates Benambran Orogeny
• Some remobilisation of chalcopyrite
• Late brittle faults
Mineralisation – age evidence?

- Hosted by Early Ordovician Narrama Formation
 - Biostratigraphy
 - Supported by detrital zircon provenance\(^1\)

- Plus Pb isotope model ages\(^2,3\)
 - Mostly Late Cambrian to Early Ordovician
 - Minor Devonian

Research project

• Significance of silica-iron rocks
 – Formation? Are they exhalative?
 – Mineralised v non-mineralised
 – Exploration vector?

• Mineralisation
 – Formation?

• Tools
 – Sulfur isotopes
 – Petrophysics
 – Pyrite geochemistry
 • Laser ablation ICPMS
Silica-iron rocks

- Exhalative or exhalite
- Worldwide feature with VAMS
 - Time and space
 - Typically overlie ore levels
 - Laterally extensive
- Form from ‘hydrothermal input to ongoing sedimentation’\(^1\)
- Geochemistry of magmatism influences type
 - Felsic systems = barite
 - Mafic systems = jaspers

\(^1\) – Gibson et al. 2007

Slack (2010) USGS
Silica-iron rocks

- Only in Early Ordovician Narrama Fm.
- Always near mafic or ultramafic rocks
- Layered quartz and iron oxides
- Same structure as turbidites
- 57 to 94% SiO$_2$
- 2 to 10% Fe$_2$O$_3$
- Variable magnetite content but still most magnetic rocks regionally
 - Average magnetic susceptibility
 1452 x 10^{-5} SI
 - Maximum 52 100 x 10^{-5} SI
Silica-iron rocks

- Those associated with mineralisation are geochemically distinct
 - Positive Eu anomaly when normalised to chondrite
 - Relative enrichment in REE
 - Elevated Cu and Ag
 - Narrow range of sulfur isotopes
 - 10.2 and 12.8‰
 - Reduced seawater sulfate source
 - (other silica-iron biogenic source)

- In summary ...
 - Silica-iron rocks are magnetic
 - Those associated with mineralisation can be discriminated geochemically
Mineralisation

- Sample from banded pyrite ore at Tritton
- Chalcopyrite within early pyrite
 - Magmatic source
- Sn (Ag-In) with Cu
 - Mafic source
- Ni v Co ratio
 - Seawater source
- U-Th rims
 - Seawater source
Mineralisation v silica-iron

- Pyrite geochemistry
 - As you go up sequence ...
 - Lower temperature
 - Increased sediment input
- Sulfur isotopes
 - Consistent across zones
- Deformation
 - Same fabrics and geometry
- Exhalative horizons formed from same process as mineralisation

Legend: Δ = footwall, O = laminated ore zone, ● = copper-rich ore zone, ■ = massive sulfide, □ = silica-iron horizon.

Sulfur isotopes across Tritton ore zone (‰)

Volcanic, magmatic and hydrothermal

Sedimentary and mafic source rocks

Co (ppm)

Ni (ppm)
Mineralisation - how did it form?

- Early Ordovician extension
- Hydrothermal cell driven by magmatism (MORB)
- Fluid from magma, seawater, sediments
- Metal precipitation as cooled by seawater in sediment pile
 - Subseafloor replacement
- Exhalites are spent fluids

Huston (2002)
Mineralisation - how did it form?

- A syngenetic origin – volcanic-associated massive sulfide (VAMS)
 - Mafic-siliclastic\(^1\) or pelitic–mafic-hosted (Besshi-type) Cu\(^2\)
- Preservation aided by sediment pile and ongoing sedimentation
- Deformed in Benambran Orogeny
 - Remobilisation of chalcopyrite, not hot enough to effect pyrite

Source: 1 – Piercey (2007), Downes et al. (2011)
So how do you find one ... an exploration guide

• **Stratigraphic corridor**
 -- Look in the Narrama Formation
 • FW – mafic (MORB not OIB)
 • HW – quartzite, exhalative
 -- Use regional magnetic data
 • Most likely exhalative horizons
 • Look at REE, Eu, Cu, S-isotopes
 -- Electrical geophysics
 • AEM / DHEM (e.g. Collins 2001)

• **Structure**
 -- Regional-scale (F3) folding
 • Structural repeats?
 -- Ore body geometry
Exploration guide

• Helix Resources Limited discovered Collerina VAMS in 2014
• Between Budgery and Tottenham
• GSNSW trend used to identify potential targets under cover

Source: Helix, ASX announcement 01/04/2015
Summary

• Girilambone Group hosts significant VAMS mineralisation

• Understanding the setting and style of mineralisation is critical to develop exploration models for further discovery

• Integration of geoscientific observations at different scales

• Communication between geologists
 • Government
 • Industry
 • Academia
Acknowledgments

• Geological Survey of NSW
 – Rosemary Hegarty, Cameron Quinn, Ian Percival, Michael Bruce, Gary Burton, John Greenfield

• Industry
 – Phil Jones (Straits)
 – Peter Muccilli and John Thievesson (Mincor)

• University of Tasmania