Quo Vadis Exploration?

We are spending more on exploration ... but have less to show for it

Exploration expenditures and Major discoveries in the Western World: 1950-2009

- Expenditures went up, but discoveries are down
- Note: "Major" defined as >1 mt Cu-equiv, >1 Moz Au-equiv, >100 kt Ni, >10 m carats >25 kt U₃O₈
- Excludes bulk and industrial mineral discoveries

Sources: MinEx Consulting, and exploration data from 1993 onwards from MEG

MinEx Consulting
Strategic advice on mineral economics & exploration
The evolution of the use of geophysics in the search for blind VHMS deposits in the Abitibi greenstone belt, Ontario–Québec Canada

Ken Witherly
Condor Consulting, Inc.
Michel Allard
Xstrata Zinc Canada
The Target

The Simple Exploration Model

Gravity

Magnetic

Overburden

R2

R1

Fault

Massive Sulphides
Magnetite Alteration Zone
Dyke

0 100 200
metres

noranda
62 VHMS Deposits (>0.2Mt)
Discovery vs time

Geophysical contribution in 43 cases
Depth to the top
62 VHMS Deposits (>0.2Mt)

50 blind deposits

© Condor Consulting 2011
Depth of drilling vs time
Abitibi Subprovince

of Drill Holes
16000
14000
12000
10000
8000
6000
4000
2000
0
Shallow drilling <100 m
Deeper drilling >100 m

0-100m
100-200m
200-500m
500m +

© Condor Consulting 2011
Hypotheses explaining the relative decrease in new discoveries.

All the big deposits have been found. The undiscovered ones are typically too small, too deep and therefore uneconomic.

Since the Abitibi has been intensively explored in the past, the chance of finding is decreasing; this results in less exploration effort which in turn leads to fewer discoveries and so on.

Intrinsic limits of detection technologies and geological knowledge
1999: Difficult time for Noranda and the industry

- October 1999: Closing of Mine Gaspé, Murdochville. 300 lay off.
- November 2001: Noranda announces temporary closure of its smelting infrastructures.
- April 2002: Definitive closure of the smelter. 300 more lay off.
“ask not what your country can do for you - ask what you can do for your country.”

Quebec government asked the industry: “what your country can do for you?” to prevent more infrastructure closings.

The industry (Noranda) suggested tax credits on exploration work!

Solution: an incentive plan
40% refundable tax credit for non-producing companies
20% for producers + 40% non-refundable tax credit applicable on capital tax for all exploration work.
2001 Exploration Objectives:

- Generate high quality VMS exploration targets in order to discover 5-50 Mt deposit with NSR > 80$/t
- Find new ore to replace 3 years reserves of Louvicourt
- Provide Noranda Horne smelter with polymetallic concentrate having gold credits
- Prevent more closure following the one of Gaspe Smelter in Murdochville in August 2002.
$/ton vs VHMS tonnage

Economic model

Smaller higher grade deposits
(brownfield target)

Larger lower grade deposits
(greenfield target)

IDEAL ABITIBI TARGET
MegaTEM Rational: New Search space

- Relatively few deposits found at a depth below 50 m
- Limited drilling below 100 m
- In-house tests had demonstrated that the MEGATEM system could detect typical VHMS at least to a depth of 250 m.

- Typical VHMS deposit has a high in-situ value (Figure 5). A stand alone 20 Mt deposit shows an in-situ value of 350$US/t (at current prices) is deemed as an attractive target

- Exploration risk could be shared with the government and junior companies.
MegaTEM Rational:

New Search space

Relatively few deposits found at a depth below 50 m

Limited drilling below 100 m

In-house tests had demonstrated that the MEGATEM system could detect typical VHMS at least to a depth of 250 m.

Typical VHMS deposit has a high in-situ value (Figure 5). A stand alone 20 Mt deposit shows an in-situ value of 350$US/t (at current prices) is deemed as an attractive target.

Exploration risk could be shared with the government and junior companies.

© Condor Consulting 2011
The Dream

AEM Performance
Best Case
1975 = 10% (Input)
1990 = 46% (GEOTEM)
2001 = 100% (MEGATEM)

Repeat the sequence of discoveries generated by the first airborne surveys during the late '50s:
Brunswick 12, Mattagami Lake, Kidd Creek...
Lack of deposit due to the limitation of the previous technology. Potential range 50-200 m for VMS discoveries using the present technology.
MegaTEM Surveys

Coverage from 2001-2006: (180 207 lkm)
Including 140 000 by Xstrata and partners
Typical VMS Terrain

TMI 50 km EM Ch 3
Typical VMS Terrain

Zoom in...

TMI 10 km EM Ch 3
Area and Target Selection

1) “Subjective” priorities based on the following criteria:
 - Favorable geology (Scale 2-3)
 - Coincident MAG-EM anomalies
 - Isolated anomalies (avoid formational)
 - On Xstrata properties or open ground
 - Untested by previous drilling

2) “Objective” priorities based on a large geological-geochemical database was used in parallel to query AEM results using intelligent GIS algorithms.
Area and Target Selection

Picking
- MEGATEM anomalies

Screening
- Identified and selected anomalies

Prioritisation and validation
- GIS TARGETS
- BASED ON EXPERIENCE TARGETS
- MATRIX TARGETS

GEOLOGY, GEOCHEM, GEOPHYS
- Data compilation
- Data integration
- Generation of thematic maps

Ground follow up
- Priority
 - High
 - Low

Drilling
- Drill Target

© Condor Consulting 2011
End Results

On the Québec side

- 40,000 EM picks
- 349 AEM anomalies were followed up
- 203 were drilled tested for a total 267 DDHs.

While discoveries can occur well after the initial generative work, at this stage no new deposits have been attributed to the MEGATEM initiative.

WHY?
WHY?

- Geological concepts/models
- Geophysical technology
- Managing “luck”
Scales 1 and 2

FIGURE 2. Idealized section — productive felsic volcanic pile.
Scale 1: Deposit Scale
Typical VHMS

Massive sulphides

Hydrothermal alteration zone and pipe
chlorite, sericite, quartz

Stockwork
Cp+Py+Po stringers
Magnetite zones

Adapted from J Lydon
Scale 2 : Property scale ex: Noranda camp

Local Felsic dome

VHMS

mafics

Synvolcanic faults

After Gibson, 1999
Scale 3: Area selection cartoon
Scale 3: Magnetic and density modeling

Three dimensional density and susceptibility distribution from non constrained inversion

3D density

3D susceptibility
Smaller probability of finding a large barren deposit

Assuming a uniform vertical distribution (down to 500m) and a statistically true size distribution

<table>
<thead>
<tr>
<th>l</th>
<th>L</th>
<th>th</th>
<th>nb</th>
<th>eroded</th>
<th>remaining</th>
<th>outcropping</th>
<th>0-100m</th>
<th>outcropping</th>
<th>blind</th>
<th>0-100m</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>1250</td>
<td>50</td>
<td>100 000 000.00</td>
<td>5 (4%)</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>40%</td>
<td>60%</td>
</tr>
<tr>
<td>200</td>
<td>500</td>
<td>25</td>
<td>10 000 000.00</td>
<td>26 (20%)</td>
<td>4</td>
<td>25</td>
<td>5</td>
<td>3</td>
<td>19%</td>
<td>81%</td>
</tr>
<tr>
<td>100</td>
<td>175</td>
<td>15</td>
<td>1 050 000.00</td>
<td>100 (76%)</td>
<td>25</td>
<td>75</td>
<td>8</td>
<td>9</td>
<td>11%</td>
<td>89%</td>
</tr>
</tbody>
</table>

© Condor Consulting 2008

© Condor Consulting 2011
False Positives

1. Few good targets in the right geological setting.
 - Barren sulfides (mainly Py-Po stringers)

2. Numerous targets that appear like VHMS targets but are not in the right geological setting
 - Barren sulfides and graphite

One easy solution: no selection of “formational” conductors

Consequence: Lost opportunity or reduced search space
VHMS have been found in the so-called “formational” settings

THUS: Need for better predictive models
"Only good fishermen are successful, first by selecting the good lakes and then the good spots"
The evolution: Reid Mahaffy example

Gravity data at this scale can help to constrain and refine EM conductors in gravity lows.
Toronto, 2 June 2011

Xstrata Zinc has entered into a binding agreement with Sabina Gold and Silver Corporation to purchase the Hackett River and Wishbone exploration properties in the Western Kitikmeot region of Nunavut, North Canada. Under the terms of the agreement, Xstrata will pay a cash consideration of $50 million and will grant a silver royalty to acquire the properties. Additionally, Xstrata will commit a further $50 million in exploration and to complete a bankable feasibility study within four years of the transaction’s closing.
Now and into the future

- Near mine exploration will remain quite effective.

- Incremental advances in technology can be expected and in the right geological circumstances, ex: Lalor Deposit

- The efficacy of geophysical techniques to search at depth (2-3 km) will remain challenging.

- More integrated modeling of multiple data sets is expected to help define areas of interest.

- Specific targeting (i.e. where to drill) will likely require some new definitions of geoscience infrastructure such as systematic seismic-MT transects and deep drilling for geological control and to feed-back into modeling.

- Economically the shortest returns could be realized if the means could be developed to target effectively in the areas classified now as “formational conductors”
Technical Program

Wednesday, March 9

New discoveries and developments

9:00 am – 12:00 noon

Chairs: Bill Mercer, Avalon Rare Metals Inc. & Charles Beaudry, Xmat Inc., Toronto, Canada

The New Sera Pelada (high-grade gold PGE's in Brazil), Vic Wall, Colossus Minerals Inc., Spring Hill, Australia

Building Ontario's largest gold mine, Gerald Panneton, Detour Gold Corporation, Toronto, Canada

Pallas Green project, Normand Dupras, Xstrata Zinc Ireland Ltd., Limmerick, Ireland

Visit www.pdac.ca (click on PDAC 2011 Convention) in the coming weeks for a complete list of presenters.

Looking under cover

9:00 am – 12:00 noon

Chairs: Neil Gow, Consultant, & George Cargill, Cargill Consulting Geologists Limited, Toronto, Canada

Geophysical exploration: Challenges for large and small companies, Jim Misener, Paterson, Grant & Watson Limited, Toronto, Canada

Geophysics for blind VMS deposits in the Abitibi greenstone belt: Past, present and future, Michel Allard, Xstrata Zinc, Saint-Laurent, Canada

Geological inferences from pre-competitive geophysical data, Nad Stoiz, Geoscience Australia, Symonston, Australia

Exploration geochemistry: An integrated future, Mark Fedikow, Mount Morgan Resources Ltd., Lac du Bonnet, Canada

New advances in geochemical exploration for porphyry deposits in lithocap and green rock environments, David Cook, CODES, University of Tasmania, Hobart, Australia

Exploration for blind "Irish type" Zn-Pb deposits and the discovery of Pallas Green, Ireland, David Blaney, BRG Ltd., Naas, Ireland

Advances in exploration targeting, Campbell McCuaig, University of Western Australia, Crawley, Australia

Short Courses and Workshops

9. Changes to NI 43-101: How will they affect your company?

Tuesday, March 8

7:00 – 9:00 am

Organizer: Ontario Securities Commission

The proposed amendments to NI 43-101 do not alter the core principles which have been in place since 2001. They do however reflect nine years of regulatory experience, broad consultation through focus groups and a public comment process. It is anticipated that the changes will provide cost savings and efficiencies to mining companies without compromising investor protection and the benefits of NI 43-101.

The proposed changes aim to eliminate or reduce the scope of certain requirements, provide more flexibility to mining companies and qualified persons in certain areas and reflect changes that have occurred in the mining industry since NI 43-101 came into effect.

10. DMEC workshop series: Driving exploration success in deep exploration through multidisciplinary collaboration and data integration

Wednesday, March 9

1:00 – 5:30 pm

Organizers: Ken Whelby, Condor Consulting Inc., Lakewood, USA & Charles Beaudry, Xmat Inc., Toronto, Canada

DMEC is the Deep Mineral Exploration Conference. DMEC is the outgrowth of the very successful Exploration 07 Symposium held in Toronto (Sept 2007) that drew together over 1,000 delegates to review the state of the art in minerals exploration technology. At PDAC 2011, DMEC will launch what is planned to become an annual workshop series that will focus on the topics identified at Exploration 07 deemed critical to future exploration success.

The first workshop examines the importance of integrating borehole and surface geophysical data in deep exploration. The workshop will feature what are some of the world's most cost-effective cases of drill-induced resistivity imaging success.

News Releases

July 26, 2011

Exploration Undercover: a practical example using the QUEST study area

Geoscience BC and the BC Geophysical Society would like to draw your attention to an upcoming workshop "Exploration Undercover: a practical example using the QUEST study area". The workshop will be held on Oct 12-14th in downtown Vancouver.

This workshop is being organized in response to the highly successful workshop "Exploration in 2009 - Tools and Techniques to Explore Under Cover", which was held on October 6-7, 2009 in Golden, Colorado as part of the Society of Economic Geologists 2010 Conference. The Vancouver workshop will cover much of the same material but will be tailored to a BC audience.

Workshop Description

In this workshop, workshop participants will be exposed to new advances in geological mapping, airborne and ground geophysical methods, and to the practical application of these advances with a focus on the Quest study area. The workshop will also include a field trip including visits to the Quest Study Area.

News

- 2011
- 2010
- 2009
- 2008
- 2007
- 2006
- 2005

Future Discoveries are in our hands

Minerals Exploration
- Deeper penetration (More power, greater precision, better interpretation software)
- Satellite deposit detection
- Transferring oilfield technologies to mineral exploration
- Technology developments in mineral exploration
- Uranium exploration update
- Case histories of successes and failures of exploration under cover in major Australian mineral exploration domains including the Yilgarn, the Gawler, the Lachlan Fold Belt, etc – could include identifying new mineralised provinces, as well as exploration for gold, base metals, diamonds, iron ore & mineral sands

ASEG 2009
PRESIDENTIAL PERSPECTIVE

Reaching Out to the Future

For those of you who were able to attend the Keystone Meeting in October, you’ll undoubtedly remember the great engagement from the 170 student members who attended the meeting and the fun you had in forming and renewing relationships with other members in our Society. Having been involved in promoting SEG programs for students during my five-year term with SEG Foundation a few years ago, I find it gratifying to see the growth of the student and with other student chapters and the broader membership. This is essentially free, but it requires more involvement from our members and fellows, as well as from Student Chapter sponsors and the SEG mentors.

The students recommended, and the SEG Executive Committee supports, the establishment of a committee of students, to consist of one student per region to be elected or selected by the student chapters and, at least initially, position to represent the region that includes Mexico, Central America, and the Caribbean. In addition, we’re considering establishing additional VPs for Africa and other regions of the world not cur-

VIEWS I

Grassroots Exploration: Between a Major Rock and a Junior Hard Place

Peak metal—the time when demand for certain metals exceeds supply, irrespective of how much is spent on exploration and recycling (e.g., Sverdrup et al., 2009)—is righ according to a growing number of its adherents, but mainly from outside the mining industry. Nonetheless, it is being increasingly districts are traditionally discovered, can be sustained at something approaching historical levels. Grassroots exploration has made major contributions to the global metal inventory (Table 1) and, arguably, remains a prerequisite if we are to satisfy long-term metal demands. explorers, although their near-mine (brownfields) exploration efforts have recently been rewarded with a number of outstanding discoveries, perhaps most notably in the porphyry con-
VIEWS II

Exploration—People and Discovery

(These columns are the opinion of the authors and do not necessarily reflect the view of the SEG)

INTRODUCTION

At the NewGenGold conference held in Perth in late 2009, presenters consistently expressed two major factors critical to the discovery of new ore deposits, often repeated multiple times.

The energized learners

The lifeblood of the industry comes from young, enthusiastic, and educated employees. The problem is that the industry in general does a poor job of attracting these people and typically does not transferable skills. Of course, this is not...

VIEWS II

Exploration—It’s All About Turning Rocks into Money

INTRODUCTION

I’ve been in the exploration and mining business for 32 years, during which time my professional career has evolved from mapping and sampling rocks into “turning rocks into money.” During this...
EXPLORATION IN 2020

TOOLS AND TECHNIQUES TO EXPLORE UNDER COVER

Discovery of new mineral resources faces challenges in many parts of the world, with the increased likelihood that new discoveries will be non-outcropping. Moving exploration under cover requires new approaches in the way prospective areas are selected; target models are defined; and geoscience data are acquired, processed and interpreted, with increased emphasis on modeling geology and geophysics in a 3-D GIS environment.
Way Ahead...