KAGARA ZINC LTD

The Mungana porphyryrelated polymetallic deposit, North Queensland

KZL EXPLORATION Mines and Wines, September 2007

LOCATION

TOPICS

- History
- Regional geological setting
- Local geology
- Mine geology
- Age dating
- Geochemical associations
- Ore textures

KAGARA ZINC LTD

Mungana - 21 years old

MUNGANA RESOURCES, 2007

BASE METALS RESOURCE (INDICATED + INFERRED)

1.96 Mt @ 14.3 %Zn, 2.8 %Cu, 2.2 %Pb, 188 g/t Ag, 1.15 g/t Au

(280,000 t Zn, 55,000 t Cu, 40,000 t Pb, 12 M oz Ag, 70,000 oz Au)

GOLD RESOURCE (INFERRED)

53.7 Mt @ 1.1 g/t Au, 0.1 %Cu, 0.2 %Zn, 0.1 %Pb, 8 g/t Ag

(2 M oz Au)

MUNGANA MINE DEVELOPMENT PLAN

MASSIVE SPHALERITE/CHALCOPYRITE IN SANDSTONE

700.7-724.7m:- 24m @ 6.1 %Cu, 13.4 %Zn, 510 g/t Ag, 1.3 g/tAu

MASSIVE SPHALERITE/CHALCOPYRITE IN LIMESTONE

700.7-724.7m:- 24m @ 6.1 %Cu, 13.4 %Zn, 510 g/t Ag, 1.3 g/tAu

MASSIVE SPHALERITE/CHALCOPYRITE IN LIMESTONE

700.7-724.7m:- 24m @ 6.1 %Cu, 13.4 %Zn, 510 g/t Ag, 1.3 g/tAu

GEOLOGICAL UNITS IN THE CHILLAGOE AREA

PUBLISHED SUPERSUITE AGE DATES, ATHERTON 250K SHEET

PERMO-CARBONIFEROUS SUPERSUITES, CHILLAGOE AREA

- O'Briens Creek Supersuite (315 Ma) felsic I type, reduced, highly fractionated - typically Sn; also W,Cu,Au,Ag,Pb,Zn,Bi, As,Sb
- Almaden Supersuite (300 Ma) felsic to andesitic I type, oxidised, unfractionated - typically Cu,Pb,Zn,Ag,As
- Ootann Supersuite (300 Ma) felsic I type, mostly reduced, highly fractionated - typically W,Mo,Bi
- Claret Creek Complex (290 Ma) felsic to andesitic I type, oxidised, unfractionated
- Lags Supersuite (280 Ma) felsic A type, reduced and oxidised, unfractionated; minor U,F,Au

GEOLOGICAL UNITS IN THE CHILLAGOE AREA

METAL DEPOSIT TYPES BY COMMODITY IN THE CHILLAGOE DISTRICT

Many polymetallic deposits (telescoped) that fall into 3 broad groups -

• high grade base metals only (Zn-Cu-Pb-Ag), no gold Examples:- Girofla, Lady Jane, King Vol, Redcap group

gold-copper, with high-grade base metals (Zn-Pb-Ag)
 Examples:- Mungana, Harpers

gold-copper only, little or no base metals

Examples:- Red Dome

GEOLOGY, RED DOME - MUNGANA MINE CORRIDOR

PORPHYRY WITH QV & UST

PORPHYRY WITH QV & UST

PORPHYRY WITH QUARTZ STOCKWORK

?QV / ?SIL PORPHYRY – 15 g/t Au

MUNGANA GEOLOGY, 2000 mRL

CENTRAL MUNGANA GEOLOGY, 2000 mRL

EASTERN MUNGANA GEOLOGY, 2000 mRL

MUNGANA 3850E XSECTION

MUNGANA GRANITE

ZIRCON SHRIMP AGE DATES, MUNGANA INTRUSIONS

GEOCHEMICAL ASSOCIATIONS

High-grade base metals

- typically high Zn, Cu, Pb, Ag, As
- strongly anomalous Sn +- W
- Gold typically Au, Bi
 - Ag, Cu

NOTE:- Mo, Sb moderately elevated, unknown status

ZONED GARNET IN WOLLASTONITE

ZONED GARNET IN WOLLASTONITE

MASSIVE SPHALERITE INTERSTITIAL TO GARNETS IN SKARN

SKARN BRECCIA WITH HONEY SPHALERITE MATRIX

MASSIVE SPHALERITE IN SIDERITE

MASSIVE SPHALERITE IN SIDERITE

MOLYBDENITE IN GARNET-WOLLASTONITE-QUARTZ SKARN

ZONED GARNET WITH SPHALERITE INCLUSIONS

Plane polarised light; Length of image = 5.6 mm; matrix mostly retrograded to calcite

SPHALERITE INTERGROWN WITH WOLLASTONITE

Plane polarised light; Length of image = 5.6 mm; sphalerite with px inclusions (clear) co-existing with un-retrograded fibrous wollastonite

SPHALERITE INTERGROWN WITH WOLLASTONITE

Plane polarised light, close-up of previous; sphalerite with px inclusions (clear) coexisting with un-retrograded fibrous wollastonite

ZONED GARNET & INTERGROWN WOLLASTONITE / SPHALERITE & CALCITE

1/2 NQ2 core

Top half of photo (mottled lt gy) => marble
Bottom half => garnet (yw) + intergrown wollastonite / sphalerite

GARNET IN PYROXENE / SPHALERITE MATRIX

½ NQ2 core

Garnet + clinopyroxene on left, garnet in sphalerite-rich matrix on right

ZONED GARNET RIMMED BY SPHALERITE/CHALCOPYRITE

Reflected light, length of photo = 5.6 mm; left to right = garnet (med gy) => sphalerite (It gy) => chalcopyrite (yw) => retrograded matrix (dk gy); note sp-cp inclusions in gt

SPHALERITE/CHALCOPYRITE IN QUARTZ-CALCITE-ACTINOLITE MATRIX

Plane polarised light; length of photo = 2.8mm; chalcopyrite / sphalerite (bk), matrix is retrograded qtz + calcite + actinolite (brown)

CONCLUSIONS - KEY POINTS

- high grade base metals developed at fairly high temperatures at an early retrograde skarn phase
- porphyry emplacement followed
- base metal mineralization can be assigned to the "O'Briens Creek" Supersuite event
- Au not so certain, second retrograde event = syn O'Briens porphyry? or post?
- later development of the near-surface breccia cone probably just re-distributed metals, as concluded by previous workers
- preliminary fluid inclusion studies => coexistence of hightemperature vapour-rich and sulphide-rich inclusions

KAGARA ZINC LT D

Thank you

