Thomson-Lachlan seismic project Results and implications

R.A.Glen¹, <u>Yvette Poudjom Djomani¹</u>

R.J. Korsch², R.D. Costelloe² and S. Dick¹

¹ Geological Survey of New South Wales, Department of Primary Industries

² Predictive Mineral Discovery Cooperative Research Centre, Geoscience Australia

Geological Survey of NSW

Collaborative high resolution seismic reflection survey

Between the DPI, pmd*CRC and GA

Full description of the project in Mines and Wines 2006

Main objectives:

1) To investigate the nature and location of the east-west boundary between the Thomson and the Lachlan orogens

2) To assess mineral potential north and south of this boundary

3) To establish the crustal architecture of the Thomson and Lachlan orogens

Geological Survey of NSW

Tools

Combination of:

Interpretation of geophysical images (gravity and magnetics)

Lithology from drill holes

Some field mapping

U-Pb dating of zircons

Geochemical analysis of rock samples

Interpretation of deep seismic lines

2D gravity modelling

3D models with GoCad – gravity and magnetic edge analysis, and structures

Geological Survey of NSW

Background geophysical information - Gravity

Geological Survey of NSW

Background geology

Lachlan – 3 fold stratigraphy from mapping in the Cobar region:

- Basement = Ordovician turbidites and Silurian granites
- Early Devonian sediments and volcanics in rift basins
- Late Devonian fluviatile cover rocks

<u>Thomson</u> – very poorly known, obscured by 0-300 m of Mesozoic cover from the Eromanga Basin

Information available from old petroleum and mineral exploration drill holes

Geological Survey of NSW

NSW DPISolid geology from drill hole (~ 1200) and some field mapping

Andesitic volcanics drilled by Newcrest Calc-alkaline, arc signature (Burton, 2007) – subduction related.

> Compass drilling: pyrite and pyrrhotite 87-228 m

Volcanic and volcaniclastic mafic-intermediate package with Ocean Island Basalt (OIB) affinity (Dadd, 2006)

Geological Survey of NSW

Background geology

<u>Thomson</u>

Preliminary dating from GEMOC, Macquarie University, Sydney

Sedimentary rocks to the south and west of Louth

Sandstone/siltstone/shale

U-Pb dating from detrital zircons

This dating is consistent with black shales in Louth containing Late Ordovician graptolites

NSW DEPARTMENT OF PRIMARY INDUSTRIES

Mines and Wines 2007

Background geology

Mafic-intermediate volcanics to the east (Louth)

Vesicules filled by calcite

Volcaniclastics

U-Pb dating from detrital zircons

15 CM

Variation in size of the vesicules

Mines and Wines 2007

Seismic interpretation

Geological Survey of NSW

line TL2

<u>Thomson Orogen</u>

Lower crust = band of highly reflective material up to 6km thick interlayered with similar thickness bands of lower reflectivity. Moho at \sim 48 km.

Middle crust (10-25 km) = shorter length bands up to 3 km thick around less reflective packets

Upper crust less reflective, not much info from seismic data

Geological Survey of NSW

Australian Governmen

Geoscience Australia

NSW DEPARTMENT OF

Lachlan Orogen

Lower crust = highly reflective lower crust between 18-33km, strong reflector interpreted as a flat lying Moho

Middle crust poorly reflective

Upper crust made of basement, rift basins, cover

PRIMARY INDUSTRIES

Mines and Wines 2007

Seismic line TL3

Thomson line 05GA-TL3 6 seconds migration

Lachlan Orogen: Upper crust on seismic interpretation of line TL3

Basement = Ordovician turbidites,

Early Devonian rift basins (Cobar SuperGroup) + sag phase

Cover = mainly Mulga Downs Group

Mt Jack Fault zone

pmd^{*}CRC

line TL3

NSW DEPARTMENT OF

Mines and Wines 2007

Structures

<u>Olepoloko Fault</u> – major planar fault dipping to the north at 45deg, and cutting through the entire crust This fault separates thick crust of the Thomson (Moho at 48 km) from thinner but more reflective crust of the Lachlan (Moho at 32 km)

Australian Government Geoscience Australia

NSW DEPARTMENT OF PRIMARY INDUSTRIES

Mines and Wines 2007

Nelyambo Trough

Structures

identified from regional gravity as a 20 km wide WNW-trending zone south west of the Nelyambo Trough.

NSW DEPARTMENT OF

Geological Survey of NSW

Structures

<u>Mt Jack Fault Zone</u> – identified from seismic data, lies parallel to, and northeast of the Mt Jack gravity high.

Geological Survey of NSW

3D views

Geological Survey of NSW

3D views

Olepoloko Fault

Mt Jack High

Geological Survey of NSW

3D views

Olepoloko Fault Mt Jack High Nelyambo Trough

Geological Survey of NSW

Gravity modelling

Starting models based on the seismic interpretation

Geological Survey of NSW

Seismic line TL1 – no igneous bodies

Geological Survey of NSW

Conclusions - 1

The Olepoloko Fault marks the boundary between the Thomson and the Lachlan, It is a north dipping fault that cuts through the crust

The Moho is at 48 km depth beneath the Thomson, and at 33 km on the Lachlan. Thick crust : (?) tectonic stacking, magmatic underplating or a combination of both?

The differences in character of the lower crust (more reflective under the Lachlan than the Thomson) confirms a major difference between the two orogens

The east-west gravity high in the Thomson is due to high density rocks in the lower crust, rather than near-surface rocks

Geological Survey of NSW

Conclusions - 2

Gravity modelling of the Mt Jack High indicates the presence of dense, igneous rocks within the rift package

The Mt Jack Fault Zone consists of a SW-dipping thrust with folds and back thrusts developed in the hangingwall. The major fault marks the southwestern edge of the Nelyambo Trough

The Nelyambo Trough is a structural basin bounded by thrusts on each side, it contains up to 6-7 km of sediments of the Mulga Downs Group and 4 km of rift sequence

Geological Survey of NSW

Implications -1

LACHLAN

Ages and units

- ?Ordovician basement
- ?Devonian rift basins Cobar Supergroup
- Mid to Late Devonian sediments of the Mulga Downs Group

Tectonics

- Early and Late Devonian Nelyambo Trough
- Mt Jack High Carboniferous ?reactivation of Early Devonian rift margin

Mineralisation

- Hydrocarbons in Nelyambo Trough
- Cobar style and MVT on Mt Jack High
- Rift package gets shallower to NW on Mt Jack High

Implications - 2

THOMSON

<u>Ages</u>

- very preliminary ages : (Pre)cambrian gabbro basement??
- •?? Ordovician q rich turbidites
- Siluran volcanics (OIB volcanics)
- undated arc andesites

•<u>Tectonics</u>

- convergent margin
- major contractional orogeny focussed in southern QLD

Mineralisation

- Veins in sediments with pyrite and pyrrhotite- compass drilling
- Mineralisation in arc rocks ?

Geological Survey of NSW

DVD RELEASE

Thomson – Lachlan seismic survey

Geological Survey of NSW

THANK YOU

Geological Survey of NSW