A porphyry Cu-Au model – exploration implications

Doug Menzies and Greg Corbett Corbett and Menzies Consulting Pty Ltd ogist

Corbett and Menzies Consulting www.cmcgeos.com

Thanks – porphyry mapping course

- Golden Cross Resources
- Newcrest Mining Limited
- North Parkes Mine
- Mel Quigley Minerals Matter
- Hanne Paulsen

Corbett and Menzies Consulting www.cmcgeos.com

Agenda

- Localisation of porphyry Cu-Au deposits (PCD)
- Factors that contribute to the high Cu-Au grades in porphyry deposits and metal zonations
- Stage model for the evolution of porphyry Cu-Au deposits incorporating time.
- Field based vectors used to explore for porphyry Cu-Au deposits.

Localisation of porphyry Cu-Au systems

- Associated with subduction related magmatic arc.
- Emplaced during a change in convergence from orthogonal to transcurrent convergence
- Partial melting of
 lower crust emplaced
 in dilational transfer
 structures

 Slab tear facilitates upwelling of mafic magmas from asthenosphere to increasing Cu-Au endowment

Controls to porphyry Cu-Au-Mo mineralisation

- Fertile magmatic source
- Trigger provided by change in convergence
- Dilatant setting eg splay
- Sheeted veins
- Competent host rock
- Polyphasal intrusions
- Only minor post-mineral porphyry

Major structures

Corbett (in prep)

Wafi-Golpu

Corbett and Menzies Consulting www.cmcgeos.com

Structure in porphyry systems – localisation hot spring and pull-apart basin filled with epiclastic sediments sinter deposits controlling strike-slip

Corbett 12770

Cadia Valley

Porphyry Cu-Au system magmas

• Calc-alkaline to alkaline in composition.

• **High water content** to promote volatile exsolution and fracturing at depths of 2-8km.

• **High oxidized (high f0_2)** to enable Cu-Au partitioned in pyrrhotite and be liberated in aqueous phase.

 High Cl/H₂O ratios allows transportation of Cu-Au into aqueous phase as chlorocomplexes.

• **High fS** needed to precipitate sulphides.

Using work by Candela (1989), Candela (2005), Jenner et al, (2010)

Factors contributing high Cu-Au grades

• High Cu-Au content is associated with bornite mineralisation

Ridgeway, NC498, 688m stock worked quartz-cpy-bornite veins 31.0g/t Au + 1.93% Cu within 84m from 821m at 7.40g/t Au and 1.27% Cu

Wafi-Golpu WR377 - 883m @ 2.15% Cu and 2.23g/t Au

References: Holliday et al (1999) Smedge; Harmony gold website

Factors contributing high Cu-Au grades

• Wafi-Golpu - later epithermal quartz-carbonate-base metal veins overprinting the system produced by the mixing of magmatic fluids with bi-carbonate bearing meteoric fluids

Wafi- 85m at 3.2 g/t Au.

WR444 – Wafi free gold in quartz-carbonategalena-sphalerite vein reporting 1m of up to 110 g/t Au

Ref: Newcrest quarter report, June 2013; Harmony 3rd quarter report, 2013

Batu Hijah–Gold deportment & Cu:Au ratio

Arif and Baker, 2012

Gold deportment in bornite

Arif and Baker, 2012 after Simon et al, 2000 and Kesler et al, 2002)

Corbett and Menzies Consulting www.cmcgeos.com

Au vs Cu vs Mo zonation at Wafi

Golpu Long section - Au in block model

- Au:Mo Pearson correlation r = -0.024, n=32653 (negative correlation)
- Cu:Au Pearson correlation r = 0.607, n=32653 (positive correlation)
- Au:bornite Pearson correlation r = 0.21, n = 1890 (positive correlation)
- Cu:Mo Pearson correlation r = 0.031, n=32653 (neutral correlation)

Corbett and Menzies Consulting www.cmcgeos.com

Interpretation

• Greater Au deposition associated with bornite as proposed by Simon *et al.* (2000) and Kesler et al (2002).

 Separate metal deposition event for Mo vs Cu/Au. Molybdenite possibly deposited by hypersaline Fe, K, Cl rich brine as oxochochloride complexes as proposed by Ulrich and Mavrogenes (2008) and Li *et al.* (2012).

Corbett and Menzies Consulting www.cmcgeos.com

Wafi - Surface geochem zonatation

Corbett and Menzies Consulting www.cmcgeos.com

PCA of Wafi surface data

Eigenvecto	ors:						
		\frown		\frown			
	F1	F2	F3	F4	F5	F6	F7
Au_ppm	0.278	-0.301	-0.019	0.858	0.027	-0.286	0.111
Cu_ppm	0.172	0.630	0.375	0.117	0.639	-0.090	0.055
Pb_ppm	0.553	-0.147	-0.051	-0.356	0.016	-0.085	0.732
Zn_ppm	-0.048	-0.064	0.829	-0.084	-0.441	-0.322	0.013
Ag_ppm	0.505	-0.115	0.285	0.090	-0.079	0.756	-0.252
As_ppm	0.548	-0.011	-0.172	-0.264	-0.002	-0.475	-0.612
Mo_ppm	0.170	0.688	-0.240	0.196	-0.625	0.027	0.105

Corbett and Menzies Consulting www.cmcgeos.com

Batu Hijah-surface geochem zonation

Cu ppm.

Au ppm.

Maula and Levet (1996)

Cu vs Mo vs Au zonation

Bajo de La Alumbrera

Batu Hijah

EI Tenniente

References: Sillitoe, (1995), Meldrum, et al., (1994), Cannell et al., (2007)

Stage model for the evolution of porphyry Cu-Au systems

STAGED PORPHYRY Cu-Au EVOLUTION

EARLY LATE dilatant ARGILLIC ARGILLIC structure day collapse structure PROPYLITIC CONTRACT ADVANCED ARGILLIC meteoric waters PHYLLIC silica stockwork lower silica grade in alunite B gtz v clinolite pyrite chlorite Tockwork pyropyllite sheeted fluid sericite B guartz flow & A veins apophyses POTASSIC corrúmdum veins higher andalusite grade in magnetite dilatant biotite veins sheeted k-feldspar veins ntrami PROPYLITIC intrusio stock + postmineral intrusion magmatic source Intrusion emplacement and B guartz vein formation Cooling and collapsing Continued collapse. heat transfer. and continued prograde of retrogrde alteration. D vein mineralization. alteration and mineralisation. & post-mineral features. Initiation of A & M quartz vein formation Exsolution of magmatic volatiles. and early mineralization

Corbett

12464L

Corbett and Menzies Consulting www.cmcgeos.com

Corbett in prep

Potassic alteration

Potassic alteration

Qtz-cpy-mo vns in bio altd sed Wafi-Golpu Bio a

d Wafi-Golpu Bio altd porphyry bxa OK Tedi, PNG

A veins Goonumbla, NSW

K-feldspar altd porphyry Goonumbla

K-feldspar altd volc Cadia, NSW

M veins Ridgeway, NSW

Corbett in prep

Corbett and Menzies Consulting www.cmcgeos.com

Drawdown and phyllic alteration overprint

STAGED PORPHYRY Cu-Au EVOLUTION

EARLY LATE ARGILLIC ARGILLIC dilatant structure clay collapse structure meteoric ADVANCED PROPY Zeolites ARGILLIC waters chlorite stockwork lower silica epidote grade in ca B gtz v alunite ctinolite ite stockwork chlorite pyropyllite sheeted fluid veins **B** quartz flow & veins apophyses veins corrumdum higher andalusite grade in nagnetite dilatant biotite veins sheeted feldspar veins intraminera PROPYLITIC intrusion stock postmineral intrusion magmatic source Intrusion emplacement and B quartz vein formation Cooling and collapsing Continued collapse. D vein mineralization, heat transfer. and continued prograde of retrogrde alteration. alteration and mineralisation. & post-mineral features. Initiation of A & M

Corbett

guartz vein formation

and early mineralization

Exsolution of magmatic

volatiles.

Corbett in prep

Phyllic fluid evolution

WR377

1276.60 m

D vein -Wafi-Golpu, PNG

Cooling and collapsing of retrogrde alteration. Corbett in prep

Corbett and Menzies Consulting www.cmcgeos.com

Argillic overprint on phyllic

Continued collapse, D vein mineralization, & post-mineral features.

Corbett in prep

Corbett and Menzies Consulting www.cmcgeos.com

Barren shoulders/lithocaps

Corbett (2008)

Vectors for porphyry exploration

- Prograde alteration zonation and actinolite
- Porphyry veins styles including D veins
- Pebble dykes
- Metal zonation
- Mag highs prograde alteration, mag lows retrograde
- Chargeability anomalies
- Skarn mineralisation or float.

Golpu Alteration/mineralisation zonation

- Alteration shells of Kf Bi+Mt Act Bi Chl
- Sulphides shells of Bn Cpy Py
- First Cpy is coincident with first actinolite

Redrawn from Menzies et al., (2013)

Porphyry vein styles

Wormy **A veins** Wafi-Golpu PNG (Muller et al, 2012.

M veins - Qtz-mag-cpy-born veins.

Corbett and Menzies Consulting www.cmcgeos.com

Prograde and proximal

A veins with Kspar selvage cut by later **B Vein-** Ridgeway

C vein -Wafi-Golpu, PNG

Retrograde and peripheral

D vein -Wafi-Golpu, PNG

D veins – retrograde and peripheral

C Main Period of Alteration and Mineralization after intrusion of "L" porphyry

El Salvador porphyry - Redrawn by Corbett in prep from Gustafson and Hunt, (1970)

QMC

El Tenniente Cannell et al., (2005)

El Salvador porphyry - Redrawn by Corbett in prep from Gustafson and Hunt, (1970)

Corbett and Menzies Consulting www.cmcgeos.com

Pebble dyke Wafi-Golpu, PNG

Magnetite creation and destruction

Aeromagnetic signatures

Chargeability highs – retrograde sericite-pyrite alteration

Ridgeway- Holliday et al (1999)

Corbett and Menzies Consulting www.cmcgeos.com

Oyu Tolgoi - Kirwin 2003

Skarns

Big Cadia skarn

Corbett and Menzies Consulting www.cmcgeos.com

Ok Tedi skarn

Summary/ implications for exploration

- PCD emplaced in extensional crustal scale structures where slab tears facilitating mafic injection into felsic magmas to increase Au-Cu endowment.
- Magmas are oxidised with high water, Cl and S contents
- Au-Cu deportment is increased by deposition with bornite which can precipitate an order of magnitude more Au than chalcopyrite.
- Porphyry Cu-Au mineralisation deposited separate phase to Mo mineralisation. Mo appears to be immobile and a good indicator of system margins.
- Later Au associated with quartz-carb-base metal veins produced by mixing with bicarbonate waters
- Actinolite is a good indicator to proximity to chalcopyrite mineralisation
- Vectors include: D veins, pebble dykes, Cu-Mo anomalism at surface, mag low/highs, chargeable zones associated with sericite-pyrite (phyllic) alteration.

Corbett and Menzies Consulting www.cmcgeos.com

Questions?

