SUBMARINE LANDSLIDES ON THE UPPER EAST AUSTRALIAN CONTINENTAL MARGIN AIG INTRODUCTORY PRESENTATION NOVEMBER 2011

SAMANTHA CLARKE | PhD CANDIDATE

GEOCOASTAL RESEARCH GROUP | UNIVERSITY OF SYDNEY

BACKGROUND

- Project Aims
- Submarine landslides & the Australian context

THE SE AUSTRALIAN MARGIN

- General characteristics & morphology
- Data set & Study Area

FAILURES ON THE MARGIN - SUMMARY OF RESULTS

- Slope morphology
- Sediment properties
- Dating
- Stability analysis

CONCLUSIONS...so far

BACKGROUND

PROJECT AIMS: WHAT ARE WE TRYING TO DO?

1. WHY? submarine landslides are occurring

- Sediment physical properties
- Slide morphology
- Failure mechanisms
- 2. WHEN? failures have occurred in the past
 - Radiocarbon ages
- **3.** *HOW*? they occur past & future
 - Location, size, possible trigger mechanisms
 - Slope stability analysis
 - Threat assessment tsunamis?

BACKGROUND

- Project Aims
- Submarine landslides & the Australian context

THE SE AUSTRALIAN MARGIN

- General characteristics & morphology
- Data set & Study Area

FAILURES ON THE MARGIN - SUMMARY OF RESULTS

- Slope morphology
- Sediment properties
- Dating
- Stability analysis

CONCLUSIONS...so far

BACKGROUND

SUBMARINE LANDSLIDES

Types of submarine slope failures: (left) planar/translational failure, (right) circular/rotational failure, which also displays multiple scarps as a result of retrogressive failure (Highland & Johnson, 2004)

TRIGGERS

SIZE AND EXTENT

- Common in geologic record
- Triggers not well understood
- Shallow gradients
- Wide range of scales up to 3000 km³

CONSEQUENCES

- Damage to seabed infrastructure
- Subsidence of coastal areas
- Tsunami generation
- Earthquakes, Storm wave loading, Erosion (slope over-steepening), Rapid sedimentation (under-consolidation), Weak layers, Gas hydrate dissociation, Sea-level changes, Glaciation and isostatic uplift, Volcanic activity, Diapirs, Creep

BACKGROUND

- Australian coastline vulnerable → 85% of population & much critical infrastructure <50 km offshore
- Cause + Potential of submarine landslides NOT determined
- Australia's tectonic setting passive, geologically stable margin
- Recent investigations → many large, geologically young (< 20 ka) submarine landslides

BACKGROUND

- Project Aims
- Submarine landslides & the Australian context
- THE SE AUSTRALIAN MARGIN
 - General characteristics & morphology
 - Data set & Study Area

FAILURES ON THE MARGIN - SUMMARY OF RESULTS

- Slope morphology
- Sediment properties
- Dating
- Stability analysis
- CONCLUSIONS...so far

GENERAL CHARACTERISTICS OF THE MARGIN

- Sediment-deficient
- Mass-transport dominated
- Continental slope = submarine landslide features
- Passive, steep, narrow margin
- Alterations between plateaus & incised segments of margin
- Average slopes of 2.5-8.5°

BACKGROUND

- Project Aims
- Submarine landslides & the Australian context

THE SE AUSTRALIAN MARGIN

- General characteristics & morphology
- Data set & Study Area

FAILURES ON THE MARGIN - SUMMARY OF RESULTS

- Slope morphology
- Sediment properties
- Dating
- Stability analysis

CONCLUSIONS...so far

DATA SET

• Southern Surveyor Research Cruise SS2008-12

DATA SET

- Southern Surveyor Research Cruise SS2008-12
- ~13,000 km² of Multibeam Echosounding (MBES) & highresolution Topas sub-bottom profiling data

Southern Surveyor SS12 2008 Topaz Line 22b (15.05 UTC to 15.30 UTC)

• 12 Gravity Cores, 16 Dredges, 8 Grabs

STUDY AREA

BACKGROUND

- Project Aims
- Submarine landslides & the Australian context
- THE SE AUSTRALIAN MARGIN
 - General characteristics & morphology
 - Data set & Study Area

FAILURES ON THE MARGIN - SUMMARY OF RESULTS

- Slope morphology
- Sediment properties
- Dating
- Stability analysis
- CONCLUSIONS...so far

RESULTS

SLOPE MORPHOLOGY

• Combination of sub-bottom profiles & multibeam bathymetry data

RESULTS

SLOPE MORPHOLOGY

Large sediment slides (canyons)

- < 0.5 km³ to 20 km³
- Average slopes 3 7°
- Head walls and sides >17° slopes – still standing
- No detectable slide debris

RESULTS

BACKGROUND

- Project Aims
- Submarine landslides & the Australian context
- THE SE AUSTRALIAN MARGIN
 - General characteristics & morphology
 - Data set & Study Area

FAILURES ON THE MARGIN - SUMMARY OF RESULTS

- Slope morphology
- Sediment properties
- Dating
- Stability analysis
- CONCLUSIONS...so far

FAILURES ON THE CONTINENTAL SLOPE

"THE BOUNDARY FEATURE"

- Strong visual difference
- Sediment noticeably firmer below

Note: Dashed line denotes slide plane boundary

SEDIMENT PROPERTIES

No significant change

SEDIMENT PROPERTIES

CARBONATE & ORGANIC CARBON

 No significant change

			Grai	Carbonate & Organics				
	Depth (cm)	Clay (%) 6 1	Silt (%) 9 8 9	Sand (%) 8 8 9	Mean (um) ⁰ ⁶⁰ ⁰⁹	Carbonate (%) 0 3 9	Organic Carbon (%) G	
	0-							
	10 -					Ī	I	
	20 -	T	T	T	T	I	I	
	40							
	50							
	60 -							
	70 -							
	- 80 -							
	- 90 -		, ^l	! _?				
	- 100 -	İ		Ť.	ļ į			
	- 110 -					+		
	120 -					ł		
	130 -					}		
	140 -							
	150 -					4		
	160 -			}				
	170 -	1		1	1			
	180 -					1		
	190 -					1	ł	
•	200 -	~Range	~Range	~Range	~Range	~Range	~Range	
	210	14-19	54-67	17-32	15-19	12-23	6-11	

BACKGROUND

- Project Aims
- Submarine landslides & the Australian context
- THE SE AUSTRALIAN MARGIN
 - General characteristics & morphology
 - Data set & Study Area

FAILURES ON THE MARGIN - SUMMARY OF RESULTS

- Slope morphology
- Sediment properties
- Dating
- Stability analysis
- CONCLUSIONS...so far

FAILURES ON THE CONTINENTAL SLOPE

RADIOCARBON DATING

BACKGROUND

- Project Aims
- Submarine landslides & the Australian context
- THE SE AUSTRALIAN MARGIN
 - General characteristics & morphology
 - Data set & Study Area

FAILURES ON THE MARGIN - SUMMARY OF RESULTS

- Slope morphology
- Sediment properties
- Dating
- Stability analysis
- CONCLUSIONS...so far

FAILURES ON THE CONTINENTAL SLOPE

- Conventional slope stability analysis suggests high FoS
- Inconsistent with widespread slope failures

FAILURES ON THE CONTINENTAL SLOPE

- Conventional slope stability analysis suggests high FoS
- Inconsistent with widespread slope failures
- Pseudo-static analysis including factors for seismic loading require a = 0.3g to reduce FoS to 1

BACKGROUND

- Project Aims
- Submarine landslides & the Australian context
- THE SE AUSTRALIAN MARGIN
 - General characteristics & morphology
 - Data set & Study Area

FAILURES ON THE MARGIN - SUMMARY OF RESULTS

- Slope morphology
- Sediment properties
- Dating
- Stability analysis

CONCLUSIONS...so far

1. SLIDE PLANE BOUNDARY SAMPLED

2 units - distinct difference in burial signature

1. SLIDE PLANE BOUNDARY SAMPLED

2 units - distinct difference in burial signature

2. YOUNG

Sediment <21 ka directly above the 3 inferred failure surfaces

1. SLIDE PLANE BOUNDARY SAMPLED

2 units - distinct difference in burial signature

2. YOUNG

Sediment <21 ka directly above the 3 inferred failure surfaces

3. BIG & EVERYWHERE

Widespread slide features suggest slides are geologically frequent

CONCLUSIONS

1. SLIDE PLANE BOUNDARY SAMPLED

2 units - distinct difference in burial signature

2. YOUNG

Sediment <21 ka directly above the 3 inferred failure surfaces

3. BIG & EVERYWHERE

Widespread slide features suggest slides are geologically frequent

4. SHOULD BE INHERENT STABILITY

Conventional slope stability analysis suggests the upper slope should be stable

CONCLUSIONS

1. SLIDE PLANE BOUNDARY SAMPLED

2 units - distinct difference in burial signature

2. YOUNG

Sediment <21 ka directly above the 3 inferred failure surfaces

3. BIG & EVERYWHERE

Widespread slide features suggest slides are geologically frequent

4. SHOULD BE INHERENT STABILITY

Conventional slope stability analysis suggests the upper slope should be stable

→ THEREFORE...PROCESS WE DON'T UNDERSTAND (YET)

External process causing slopes to failure

CONCLUSIONS

THANK YOU for you support!

34TH INTERNATIONAL GEOLOGICAL CONGRESS

5-10 August 2012 – BRISBANE, AUSTRALIA www.34igc.org

QUESTIONS?

- Dramatically reduces the strength of the sediment
 Causes a long-term modification of the slope-geometry in order to
 - promote slope failure OR
- 3. Seismic events which is large enough to trigger sediment collapse

CORE:	GC8	B LATI	TUDE: -28°07.263'	LONGITUDE: 154°02.752'	WATER DEPT	H(m): 929 CO	RE LENGTH (m): 2.52	LOCATION DESCRIP	TION:	Northern New So ~30 nm NNE	uth Wales Margin of Cape Byron	
	0	λS		Clay (%)	Silt (96)	Sand (%)	Mean Grain Size (um)	Carbonate (%)	Organics (%)	Moisture Content (%)	Dry Bulk Unit Density (kgm -³)	Unit Weight (kNm -³)
(up) (an)	AŒ *(ka	птносо	DESCRIPTION	0.00 25.00 55.00 75.00 100.00	0.00 25.00 50.00 75.00	10000 25.00 75.00	20.00	0.00 25.00 50.00 75.00	0.00 25.00 50.00 75.00	40.00 20.00 20.00 20.00 20.00	860.00 960.00 1060.00 1160.00	15.80
0 20- 40- 60-	4		Generally uniform sectic of firm, sand-bearing, sil mud. The upper two centimeters is oxidised and presents as a thin layer of light yellowish-brown (2.57 6/4) material which grades to light olivish grey (5Y7/2) at 5cm and then darkens gradually down section to light olive grey	15.2 11.5 10.3 15.4	63.1 59.7 57.2 59.2	21.7 28.8 32.5 25.5	18.37 25.5 28.8 20.9	25.6 24.8 26.6 27.7 25.0 23.6	8.0 8.7 8.6 6.7 7.8 8.2	76.8 70.9 64.0 65.5	872.5 890.2 981.1	15.1 14.9 15.8 15.7
80— - 100—	21			13.9	57 5		24.2	23.2 29.5 28.1	7.3 5.7 6.2	54.1	1099.0	16.6
- 120 140			Uniform section of stif	12.9	65.1	24.0	21.5	23.9 20.4	6.5	54.6	1099.6	16.7
160— - 180—			mottled, bioturbated, si day. The colour gradual darkens down this secti of the core from light gr (5Y 7/1) to grey SY 6/1.7 thin zone of sandy silty clay presents betweer 1.45 and 1.60m.	ty y ey 8.4	73.0	18.6	20.3	16.1 19.0 19.8 20.0	8.4 7.5 7.4	52.3	1116.5	16.8
200— 			*Note: The upper sandy-bearing silty clay clearly distinct from low sandy mud. The boundary is sharply defined	is er .12.9	65.6	.21.4	19.5	19.2	6.4	. 50.0	1161.1	17.1
240				12.2	59.4	28.5	23.9	21.7 21.3 20.1	6.8 6.7 7.9	49.7	1134.3	16.6
260	BY: TA	om Hubble & S	amantha Clarke	DATE LOGGED: Nov-08	*Thousa	nd calandar years before	present (BP)					

CORE:	GC	11 LATI	TUDE: -28°13.491'	LONGITUE	DE: 153°58.960'	WATE	R DEPTH (m	n): 75	5 CORE	LENGTH (m): 2.49	LO	CATION DESCRIP	TION:	Norther ~30	n New So nm NNE o	uth Wales of Cape By	Margin on		
	2	ЛЯ			Clay (%)	Si (90	lt 5)	Sa (and %)	Mean (ārain Size (um)	(Carbonate (%)	Organics (%)	Moisture (%	Content)	Dry Bul Density	k Unit (kgm -³)	Unit Weigh (kNm -³)	ıt
(an) (an)	AŒ (ka	птносо	DESCRIPTION	000	25.00 50.00 75.00	25.00	75.00	25.00	75.00	0.00	40.00	000	25.00 50.00 75.00 100.00	0.00 25.00 50.00 75.00	40 80 80 80 80 80 80 80 80	70.00	80000	800	14.80 15.30 15.80 15.80	16.80
0 20—	4				12.3		57.0		30.7		23.09		23.5	8.9	8	5.4	82	8.2	15.1	
40					16.3		57.5	2	26.5		18.8		22.6 23.2 22.4	8.5 8.9 9.2	8	5.7	81	3.5	. 14.8	
- 80—			Generally uniform section of sand-bearing, silty day. The colour of material grades from light		12.7		48.3		39.0		29.4		24.1 23.1	8.3 8.0	70.5	ç	948.6		15.9	
100-			olive grey (SY6/2) to olive grey (SY 5/2) at about 0.7m and then gradually darkens further to olive		8.9		45.1		46.0	38.	2		25.5 25.4	7.2 8.0	66.3	90	51.9		15.7	
140-			grey (5Y 4/2) 1.3m . Faint mottling presents throughout		11.6		55.9		32.5		25.9		23.0 23.2	8.9 9.1	62.9	97	78.5		15.6	
160 — - 180 —					12.2		52.7		35.1		26.6		21.2 21.6 21.1	9.7 9.4 9.8	62.0		1022.2		16.2	
200-	20												20.4	9.6						
220			Light grey (5y 7/1) sandy mud. Uniform texture with faint horizontal lamination. Bioturbated with inclined and horizontal feeding burrows evident.	ļ	6.2 7.7		38.9 46.6		55.0 46.1	40	53.1).1		25.7 24.8 23.0	5.0 4.8 5.8	46. 47	.4 .8	117 115	4.4 4.0	16. 16.	8 7
260-		67.090 <u>9</u>	*Note: The upper sandy-bearing silty day is clearly distinct from lower sandy mud. The boundary is sharply defined																	
280-			Jimpy contex																	
LOGGED	BY: T	om Hubble & S	amantha Clarke	DATE	LOGGED: Nov-08	•	Thousand c	alandar ye	ars before pr	esent (BP)										

CORE:	GC	12 LAT	ITUDE: -28°37.96'	LONGITUDE: 1	53°58.09'	WATER DEPTH	(m): 1167 (CORE LENG	「H (m): 1.99	LOCATION DESCRIPTION: Northern New South Wales Margin ~30 nm NNE				E of Cape Byron	
		JGY		Cla (%	y)	Silt (%)	Sand (%)	Mea	n Grain Size (um)	Carbonate (%)	Organic Carbon (%)	Moisture Content (%)	Dry Bulk Density (kgm³)	Unit Weight (kNm-³)	
DEPTH (cm)	AGE*(ka	ПТНОГО	DESCRIPTION	0.00 25.00 50.00	75.00	0.00 25.00 75.00 75.00	0.00 25.00 50.00 75.00	0.00	20.00 60.00	0.00 25.00 50.00 75.00 100.00	0.00 25.00 50.00 75.00 100.00	54.00 64.00 74.00 84.00	800.00 900.00 1000.00 1100.00	14.80 15.80 16.80	
0 10	3		Bioturbated hemipelag mud Generally uniform sectio of firm, sand-bearing, silt mud. The upper two centimeters is oxidised and presents as a thin layer of light yellow is brown (2.5Y6/3) material which grades tr light olive grey (5Y6/2) a 5cm and then darkens gradually down sectior of the core.	14. 15	.9 .7 .8	62.6 67.1 64.4	22.4 17.1 18.8		18.3 15.0 15.4	20.0 20.2 23.1 21.1 20.7 16.8 15.7	11.1 11.2 9.5 9.6 10.3 11.1 10.4	86.4 85.1 80.3	814.2 825.6 851.2	14.9 15.0 15.0	
90 100 110 120 130	-47		Stiff, mottled, silty cla Grey (5y 6/1) Uniform section of stiff, mottled silty clay.	, 13. , 16	.9 5.5	64.4	31.6		24.3 15.4	12.2 17.7 17.1 16.2	5.6 9.2 9.1 10.0	57.3	1062.0	16.4	
140				. 15	.1	62.3	22.6		17.4	15.7 13.8	9.5 8.0	55.5	1091.4	16.6	
160			Sandy mud mixed wit grey mottled silty cla Mixed interval of light olive grey sandy-mud an grey mottled silty clay (see photograph 3). The disturbed boundary between the two materials and the repetition of the layerin encountered in the core above suggests strongly that this section represents core resampli	18 15 19	3.7 .8	55.4 64.5	26.0 19.6		. 19.1 16.3	19.3 17.6 16.9 12.3	• 10.8 • 9.1 • 9.5 • 8.8	54.2	1120.3	16.9	
210															
LOGGED	BY: 1	Fom Hubble & S	amantha Clarke	DATELOGGE): Nov-08	*Thousand c	alandar years befo	ore present							

RADIOCARBON DATING

*Table 1*¹⁴C dating results of bulk sedimentary organic carbon samples. All samples were taken from above the inferred slide plane boundary except for sample SS2008-12/GC12/1B-88.

Lab Code	Core	Depth (cm)	Conven- tional ¹⁴ C age (BP)	¹⁴ C error*	Median cali- brated age (2σ) (BP)	2σ calibrated age range (95.4% probability) (BP)
SS2008- 12/GC8/1C-6/D	GC8	6	4,157	±45	4,229.5	4,079.5 - 4,379.5
SS2008- 12/GC8/2B-85/D	GC8	85	17,732	±95	20,699.5	20,249.5 - 21,149.5
SS2008- 12/GC11/1C-3	GC11	3	3,763	±44	3,699.5	3,569.5 - 3,829.5
SS2008- 12/GC11/3A-206	GC11	206	17,417	±91	20,149.5	19,849.5 - 20,449.5
SS2008- 12/GC12/1B-5	GC12	5	3,207	±51	3,024.5	2,859.5 - 3,189.5
SS2008- 12/GC12/1B-81	GC12	81	13,463	±77	15,799.5	15,149.5 – 16,449.5
SS2008- 12/GC12/1B-88	GC12	88	44,288	±1205	47,399.5	45,149.5 - 49,649.5

*Quoted errors are 1 standard deviation

RADIOCARBON DATING

MODELLING INPUT DATA AND BACK ANALYSIS RESULTS

Table 1 Numerical input parameters used for modeling the slides with GEO-SLOPE/W. The friction angle (Φ) represents the friction component of the soil strength and the apparent cohesion (c') represents the cohesive component of the soil strength.

Parameter	Unit	Input value range
Unit weight (γ)	kN/m ³	15 - 17
Apparent cohesion (c')	kPa	0 - 22
Friction angle (Φ)	0	0 - 40

Table 2 Back analysis GeoSlope outputs: a summary of the factors of safety (FoS) for the Byron slide arising from reducing c and Φ is shown in Table 2. Critical FoS are underlined. The Coolangatta1 and Cudgen slides follow the same trends.

Site	Scenario description	Cohesion (kPa)	Friction an- gle (°)	FoS (lowest)
			40	6.19
			30	4.26
	Residual cohesion, decreasing friction angle	0	15	1.98
			7.5	0.97
Byron Slide			3.75	<u>0.48</u>
-		11		8.8
	Peak friction angle, decreasing	5.5	40	7.8
	cohesion	2.75	40	7.28
		1.375		6.98

- Widespread erosional features
- SE Australian margin has relatively little sediment
- Slowly increasing slope due to abyssal plain subsidence
- Sedimentation rates: 0.3-1.2m/10,000years
- Retrogressive gravity driven failures (Glenn et al, 2010)

SUMMARY

Numerous large landslides have been detected on the SE Australian continental slope.

- Slopes average 1° to 9°
- Friction angles 37° to 40°, no evidence of weak clay layers
- Factors of Safety should be high
- Triaxial tests indicate brittle material response
- Largest failures (20 km³) could generate significant tsunami
- Most recent failures at time of last glaciation, at sea level minimum