SMEDG - 28th Feb 2013

"OLD ROCKS NEW TRICKS" Surprises from the Canowindra Line of Workings (CLW) in Central Western NSW.

A presentation by Tully Richards C/- Gold and Copper Resources Pty Limited (G&C)

Location of G&C Project

Location of G&C Project showing EL's (red) and ELA's (stipple)

Location of G&C Project – Min Occ with EL's

Location of G&C Project – Min Occ,EL's & Canowindra Volcanics (CV)

Host Rocks and Setting

- CLW hosted within the Canowindra Volcanic's (CV's)
- CV's ~430Myo & part of the Cudal Group
 - 180kms in strike from sth of Cowra to Geurie

CUDAL GROUP

Brown, maroon and green shale; sandstone Lithic, feldspathic and quartz sandstone; conglomerate; limestone; tuffaceous shale Coarse, lithic sandstone; siltstone; shale; chert Grey to brown, quartzose shale; siltstone; minor Andesite, porphyritic in plagioclase, augite and rare orthopyroxene: sericitised andesite Red, green and brown shale; buff siltstone; shale with concretions Grey to brown shale; minor lithic sandstone Massive fossiliferous limestone Shale, siliceous sandstone, coarse guartzo-feldspathic sandstone: minor laminated chert Garnetiferous quartz feldspar cordierite porphyry, ashstone, mass flow deposits

Host Rocks and Setting

- CV = S-Type, massive rhyolitic/rhyo-dacitic qtz-feld porph
- Chemical and petrographic characteristics of the CV and Cowra Granodiorite (CG) suggest the CV are the extrusive eq. of the CG

Host Rocks and Setting

 CV's folded during Late Devonian Tabberabberan Orogeny

Other Deposits

Other Deposits

- Other deposits hosted within the meridional extents of the discussed Silurian S-Type volcanics include..
 - Rye ParkW(Mo,Bi,Sn,mt,fluorite)
 - Kangiara Pb,Zn,Cu,Ag(Au,Bi)
 - Red Hill Cu,Au(Ag,Pb,Zn,mt,talc)
 - Murrumbateman Au(Bi, Ag)

Sig. Previous Exploration

- 1980's at Sams Reef included
 - limited geochem (incl 304g/t Au from 'mullock dump'
 - 5 RC holes totalling 462m
 - Best intersection SRP2, 9m @ 2.1g/t Au
 - Work by Eastern Gold NL across selected parts of the CLW

Eastern Gold NL

10/01/20Sydney, New South Wales 2000 (Members of The Sydney Stock Exchange Limited)

Exploration by G&C

G&C – early sampling 2005

SAMPLE	AREA	ROCK	COORDINATES	SAMPLE						ANALY	TICAL R	ESULTS	5				
NO.	PROSPECT	DESCRIPTION	MGA 94	DESCRIPTION	Au (ppm)	Ag (ppm)	As (ppm)	Ba (ppm)	Bi (ppm)	Cu (ppm)	Hg (ppm)	K (%)	Mo (ppm)	Pb (ppm)	Sb (ppm)	W (ppm)	Zn (ppm
7339	Gospel Oak Quarry	Rhyolitic tuff, sericitised and chloritised, scattered quartz-limonite veining.	659 012E 6 280 545N	4 pieces of angular float from 10m across rubble face E side upper bench	0.015	<0.2	25	70	<2	98	<1	0.31	1	44	<2	<10	80
7340	Gospel Oak Quarry	Rhyolitic tuff, sericitised, quartz- limonite veined.	658 977E 6 280 467N	Chips from several large boulders at S end of upper bench	0.011	<0.2	16	50	2	86	<1	0.24	1	25	<2	<10	45
7341	Gospel Oak Quarry	Rhyolite, sericitised, with quartz- geothite veining (some coarse and vuggy).	658 960E 6 280 489N	Pieces of rubble from 3m radius W batter of upper bench	0.010	0.2	18	50	3	198	<1	0.24	1	112	<2	<10	262
7342	Gospel Oak Quarry	Rhyolite, strongly silica-sericite- carbonate altered, with pyrite and quartz-carbonate-limonite veining.	658 969E 6 280 504N	Chips from boulders in pile (2 x 3m)	0.030	0.2	22	40	2	156	<1	0.18	1	57	<2	<10	64
7343	Gospel Oak Quarry	Rhyolite, sericitised, with quartz- limonite veining, some Cp in and close to veins.	658 952E 6 280 519N	Chips from rubble pile	0.005	1.1	19	60	6	382	<1	0.29	2	275	<2	<10	114
7344	Gospel Oak Quarry	Rhyolite, clay-carbonate-sericite altered, weathered, variably sheared, with some quartz-limonite veining.	658 946E 6 280 574N	Gouge from 1m wide N-S fault zone. N end of upper bench	0.002	<0.2	29	70	<2	24	4	0.30	1	22	<2	<10	56
7345	Gospel Oal Qualry	Rhyolite, silica-sericite-carbonate altered, partly fresh, splashy disseminated Cp, Py, Ca very minor Gn, Sp, Cc and (?)stibnite. Some sulphide stockwork. (Petrology - Sample 9049)	658 917E 6 280 615N	S end of lower bench. Chips from rubble pile (5 x 2m area)	0.010	1.7	33	70	6	2930	<1	0.37	2	350	<2	<10	68
7346	Gospel Oak Quarry 10/01/20	Argillised tuff, sheared, goethitic, with calcite veinlets and vein quartz. 05	658 922E 6 280 625N	Several fragments from E end of intermediate flitch	0.005	<0.2	68	150	<2	269	<1	0.15	1	47	<2	<10 15	51

Exploration by G&C

focused elsewhere on EL's

Concerns included scale, apparent structural complexity, and lack of guidance from geophys. etc

until decision to drill ...

CLW – Sam's Reef drilling 2011

Sams Reef – Long Section

CLW – M'chester Mine & Specimen Hill

CLW – Gospel Oak Quarry (GOQ) Overview

- Sampling from Quarry face returned up to 1% Cu
- 2 x diamond holes completed
 - Returned significant chalcopyrite
 - Copper grades up to 3x background, but not ore grade
- Mapping and XRF soil survey
- Costeans revealed trace malachite and extensive quartz veining
- Veining and Cu mineralisation over >700m strike length
- Previously unrecognised Cu occurrence not in any Dept databases.

CLW – Gospel Oak Quarry (GOQ)

CLW - GOQ

CLW – GOQ, 1.13% Cu (cpy)

CLW – drilled GOQD001 (456.8m)

 150m+ chalcopyrite from first diamond hole at Gospel Oak Quarry

CLW – mapped GOQ

CLW – drilled GOQD002 (444.8m)

CLW – Gospel Oak Quarry Gold Mine 25g/t Au

10/01/2005

10/01/2005

Spectral Work by Scott Halley

Sams Reef, ASD Mineralogy; Plan View

Sam's Reef, Sericite Composition; Wavelength of sericite 2200nm feature; Blue<2200nm (acid) Red>2215nm (alkaline)

Sam's Reef, Gold Assays Blue<0.05ppm, Red>0.5ppm Note how most of the gold is located in the transition from acid to alkaline.

Gospel Oak Quarry, ASD Mineralogy; View looking to the NNE

Gospel Oak Quarry, Sericite Composition; Wavelength of sericite 2200nm feature; Blue<2200nm (acid) Red>2215nm (alkaline)

CLW – Nth Canowindra frequent Cu in small number of more

'mafic' samples...

CLW – Lady Burdett

CLW – Lady Burdett

OR122577	31	Au-AA22 M	E-ICP41 N	E-ICP41 M	AE-ICP41 M	E-ICP41 M	E-ICP41 M	E-ICP41 N	E-ICP41 M	E-ICP41 N	AE-ICP41 N	IE-ICP41 M	E-ICP41	ME-ICP41	ME-ICP41 M	ME-ICP41	VE-ICP41	AE-ICP41	AE-ICP41 N	E-ICP41 N	AE-ICP41 N	AE-ICP41 M	E-ICP41 M	E-ICP41 M	E-ICP41 M	E-ICP41 MI	E-ICP41 M	E-ICP41 N	E-ICP41								
SAMPLE	COMMENT	Au	Ag	Al	As	Б	Ба	Бе	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	K	La	Mg	Mn	Mo	Na	Ni	P	Pb	s	Sb	Sc	Sr	Th	Ti	Tİ	U	٧	w	Zn
		ppm	ppm	96	ppm	ppm	ppm	ppm	ppm	96	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	96	ppm	ppm	%	ppm	ppm	ppm	96	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
203587	sil-ser+/-py host (fn grain) with milky qtz vns +py	0.095	0.6	1.06	80	<10	70	0.5	2	2.67	<0.5	11	15	486	2.49	<10	<1	0.36	20	1.18	783	<1	0.04	20	410	12	0.22	<2	7	164	<20	< 0.01	<10	<10	15	<10	56
203588	sil-ser+/-py host (ie sample of host rock only)	0.268	0.4	0.84	349	<10	30	<0.5	<2	2.63	<0.5	11	13	64	3.15	<10	<1	0.26	10	1.19	728	<1	0.04	20	440	13	1.4	<2	6	168	<20	< 0.01	<10	<10	12	<10	33
203589	milky qtz vns +py (ie sample of qtz only)	0.443	0.2	0.47	192	<10	30	< 0.5	<2	1.47	<0.5	6	11	291	2.12	<10	<1	0.18	<10	0.63	485	<1	0.03	9	120	20	0.74	<2	2	115	<20	< 0.01	<10	<10	8	<10	110
203590	sil-ser+/-py host (med grain) with complex milky qtz vns +py	0.838	0.5	1.57	180	<10	60	0.6	2	2.02	<0.5	9	15	810	2.43	<10	<1	0.41	10	D.88	699	<1	0.01	14	320	18	1.03	2	5	36	<20	< 0.01	<10	<10	16	<10	81
			low	15	reak el ev								ar	nomalous												low											

Observations

- Au without Cu in the Sth
- Cu without Au in the middle
- Au/Cu together in the Nth
 - Cu >> in mafic/dioritic material
- ?multiple events
- Simple metallurgy
- Some events Orogenic
- Some events hydrothermal
- Features indicate high level "epithermal" re: geol environment
 - Some placer gold, not large field(s)
 - Implications include prospectivity below, ie gold still in the ground
 - Interestingly old timers ?missed ore grade material at shallow depths
- Min occ NOT in the 'classically' described gn-cord-bi felsics $_{^{10/01/2005}}$

Comments

- Drill out small resources that could be trucked to local plants...or
- Seek cash/resources to explore thoroughly and lift the lid on a potentially large/complex Au/Cu mineral belt..
- Maintain an open mind, these rocks were left for a long time without much exploration, seemingly due to a dogma that existed re: their apparent lack of prospectivity..

Ongoing/Future Work

- Follow up geochem
 - XRF increase resolution
 - Aircore (look for mafics)
- GA-IP (look for sulphide systems)
- Drilling
 - Increase level of data about min occ (ie drill to nth of GOQ
- Hons Thesis via UoW

Marking out the next hole at Sam's Reef

Acknowledgments SMEDG for inviting G&C to talk, The Locke Bros for giving me something to talk about landowners for access colleagues for their help and enthusia