

Mapping, magnetics and microscopes: Understanding the setting of VAMS mineralisation in the Ordovician Girilambone Group, western NSW

Phil Gilmore¹, Garry Davidson², Steve Trigg¹ and Lorraine Campbell¹ ¹ Geological Survey of NSW ² University of Tacmania

² University of Tasmania

Overview

- Location
- Why and what
- Geological overview
- Outcomes
- Genetic model
- Exploration guide
- Summary

Location

 WELCOME TO

 DOTTEENHAM

 CENTRE OF N.S.W.

 DISTRICT POPULATION 600

 LEVATION 240m

Mines & Wines | Queanbeyan Bicentennial Hall, NSW | 2-4 September 2015

Geological Survey of New South Wales

Why and what

- Poor mapping resolution
 - Continue 100k mapping
- Cu-rich deposits (e.g. Tritton) poorly constrained
 - Syngenetic or orogenic?
- Multi-discipline
 - Mapping
 - Potential field modelling
 - Mineral systems study
 - Research project
 - M. Econ. Geology (CODES)
- Collaboration
 - Industry
 - Geoscience Australia

Geological overview

Geological overview

- Early Ordovician
 - Widespread extension
 - Back arc setting
- Turbidite deposition
- MORB-affinity mafic rocks

Source: Foster and Goscombe (2013), Geosciences 3 (3), Geoscience Australia – Shaping A Nation.

Mines & Wines | Queanbeyan Bicentennial Hall, NSW | 2-4 September 2015

Geological Survey of New South Wales

Mapping – turbidites

- Poor surface exposure ...
- Interbedded sandstone, siltstone and claystone
 - Minor chert horizons
- Thicker quartz-rich sand horizons
 - Same provenance as turbidites¹
 - Channel(s) across fan?
 - Metamorphosed to quartzite
- Metamorphosed lower greenschist
- Deformed asymmetric folding

1 -Fraser et al. 2014

Mines & Wines | Queanbeyan Bicentennial Hall, NSW | 2–4 Septembe

Mapping – biostratigraphy

• Conodonts in chert and siliceous siltstone

Mapping – mafic rocks

- Basalts and mafic schists^{1, 2}
 - Ocean island basalts
 - Mid-ocean ridge basalt
- Ultramafic rocks^{3,4}
 - 'Alpine style' harzburgite
 - 'Alaskan style' complexes

Pillow basalts, Mount Dijou

Geological Survey of New South Wales

Mapping – silica-iron rocks

- More extensive than previously mapped
 - The 'pink quartzite' of Smith and Hopwood in the 1970s
- 3 things about them ...
 - Magnetic
 - Same deformation fabrics & geometry as surrounding turbidites
 - Look identical to those over ore zones

Mapping – structure

- Main deformation event was the Benambran Orogeny ~440 Ma
 - Ar-Ar evidence (Fergusson et al. 2005)

Mapping – potential field models

- Magnetic and gravity models (Hegarty 2013)
 - Known mafic rocks on margins of gravity highs
 - High density basement a large mafic intrusion at 5km?

Mapping – summary

- Two packages of turbidites
 - Early Ordovician (Narrama Fm)
 - Mafic and ultramafic rocks
 - Coarser grained
 - Hosts mineralisation
 - Hosts silica-iron rocks
 - Magnetic
 - Chert and quartzite markers
 - Middle Ordovician (Ballast, Lang)
 - Finer grained
- Consistent structure regionally
 - F3 fold axis

Mineralisation

- Range of interps!
 - Syngenetic VAMS
 - 1970s, 2010s
 - Orogenic
 - 1990s, 2000s
- Tritton resources
 - 50 Mt @ 2% Cu¹
 - >755 000t Cu
 - Mined and identified resources²
- 'Very large' deposit on global VAMS scale³

1 - Jones 2012, 2 - Straits 2012, 3 – Galley et al. 2007

Mines & Wines | Queanbeyan Bicentennial Hall, NSW |

BLE 3. Examples of large-tonnage volcanogenic massive sulphide deposits of the World (Canadian deposits in

NAME	COUNTRY	Orogen	Mtonnes Ore	CU	PB	ZN	AU	AG	Orebody Age
			(GeoL)	96	.%	56	(0/1)	(p/t)	(est. Ma)
Dis Tinto (Stockwork)	Snain	Horeman	1200.00	0.15		0.15		7.00	220
Rio Tinto (Massive)	Spain	Hercynian	335.00	0.39	0.12	0.34	0.36	22.00	320
Kholodnina	Russia	Balkat-Vitim	300.00	0.04	0.79	5.2	1980	1.1	750
Windy Croggy (Cu.Co)	Canada	N.CordHoran	297.40	1.38		0.25	0.72	3.83	720
Neves Corvo Group	Portugal	Hencynten	270.00	1.59	0.15	1,41		9,87	320
Gat East	Russia	Uralides (Hercyntan)	269.00	1.2		0.7	1.10	7.70	395
Aljustrei Group (total)	Portugal	Hercynian	250.00	1.2	1.2	3.2	1.00	38.00	320
Brunswick #12	Canada	Appelechion	229.80	0.46	3.01	7.66	0.46	91.00	465
Gat	Russia	Uralidos (Horcynian)	205.00	1.4	0.06	0.5	1.10	7.90	395
La Zarza	Spain	Hercyntan	164.00	1.Z	1.1	2.5	1.80	47.00	320
Ducktown	USA	Grenvillean? (Occae)	163.34	1	100	0.9	0.30	3,00	1000
GIANT	1982 No.		1998 - A	1.1.1	0.000	100	105.6	1000	200
Kidd Creek	Canada	Abitbi (Kenoran)	147.88	2.31	0.22	6.18	0.01	87.00	2714
Home - No. 5 Zone	Canada	Abitibi (Konoran)	144.08	1		0.9	1.40		2698
Ozernoe	Russia	Halkal-Vitim	130.00	0.01	1.2	6.2			500
Ridder-Sokol	Kazakhstan	Atlaides (Hercynian)	125.00	E,0	Z	. 4	2.50	10.00	400
Zyryanov	Kazakhstan	Attaides (Horcynian)	125,00	0.4	2.7	4.5	0.13	20.00	395
Gacun	China	Yidun, Indosinian (Tathyan)	124.00	0.72	4.62	6.66	0.46	157.00	200
Masa Valverde	Spain	Hercynian	120.00	0,5	0.6	1.3	0.80	38.00	320
Sibal	Russia	Uralides (Hercynian)	115.00	1	0.04	1.56	0.60	16.00	392
Thatsis	Spain	Horcynlan	110.00	0,5	0.6	2.7	0.70	22.00	320
Yubleine	Hussia	Uralides (Hercynian)	107.00	1.9	0.1	1.2	2,50	16.00	392
Uchaly	Russia	Uralidos (Horcynian)	106.00	1,1		3.8	1.10	15.50	392
Madheus	Georgia	Caucasian (Tothyan)	102.60	1.29	2	1.8	.0.73	4.31	70
VERY LARGE	1.0000000000000000000000000000000000000	Thermology		1.000					100
Moune Lype	Austratio	Caladianter	98.57	1.17	0.01	0.04	1.55	71.00	495
Amalantar	Saala	Langelan	90.74	0.0	0.00	1.3	0.40	21.00	220
Autorial Dest La Desta III	Canada	Antorial	50.00	0.51	0.85	1.0	0.40	40.00	320
Closed on Clarko De-10	Mamiltin	Potent (Nationally	85.00	11.2	0.73	0.00	2.01	40.50	769
Destatel	Durrein	Unatition (Unamplan)	83.00	2.02	0.11	0,05	1.40	77.00	202
Manual	Turbout	Destides (Telture)	03.14	0.76	0.13	0.03	0.05	3.10	175
Dutter	Canada	Trans Listers	03.14	0.76	0.05	1.03	0.05	12.70	1000
Tambo Grando 3	Ports	S Contilloran	82.00	1.41	0.3	1.4	0.80	25.00	104
San Nicolas	Mexico	C Contilioran	79.90	3.24	-	3 37	0.53	30.00	136
Petrasalmi	Finland	Suprokatolian	75 70	0.9	0.05	19	0.20	14.00	1971
Sottel	Snain	Hoganian	75.20	0.56	1.34	3.16	0.21	74.00	320
Los Eraips	Snain	Hentenion	70.00	0.34	3.25	192		57.00	320
Howith Stonia	Canada	Annalachian	69.90	0.46	0.85	7.89	0.54	47.00	485
Ulaan	Monoplia	Kazakh-Monosili-Jorryn)	68.00	ter at ter	12	2	0.71	53.00	390
Cariboa	Canada	Appalachian	64.69	0.51	16	4.29	1.89	51.00	455
Crandon	USA	Trans, Hudson	63.60	1		6.5	1286	-	1870
Fin Fion	Canada	Trans-Hudson	62.93	2.2		4.1	7.85	43.70	1875
Zinconwan(+Knalla)	Sweden	Svecokarellan	60.00		3.7	10.4		69.00	1890
Tishin	Kazakhstan	Altaides (Horcynian)	60.00	0.5	0.9	5.3	0.90	15.00	395
Geco	Canada	West Superior (Keneran)	58.40	1.86	0.15	3.45		50.06	2720
Tambo Grando 1	Paru	S.Cordilleran	56.20	1.6	0.3	1	0.50	26.00	104
Deetni (Cu-Co)	China	Indostnian (Tettwan)	54.00	1.23		1.57	0.42	4.73	260
Home-H&G Orebodies	Canada	Abassi (Kenoran)	53.70	2.2	ñ	12.63	6.10	13.00	2700
Mount Morgan	Australia	Tasman	50.00	0.7	0.05	0,1	4.70	0.60	385
Outokumpu(Cu,Zn,Co)	Finland	Svocokarollan	50.00	3.3	0.005	1,07	0.07	9,00	1970
Artam'yow	Kazakhstan	Attaides (Hercynian)	50.00	1,4	1.6	2.2	1.20	143.00	375
Lousal	Portugal	Horzyntan	50.00	0.7	0.8	1.4	0.70	21.00	300
LARGE			100 110 10						
Britannia	Canada	N.CordBaran	49.31	1:08	0.033	0.26	0.34	4:03	150
Novo-Leninogorsk	Kazakhstan	Attaides (Hercynian)	48.00	0.16	1.43	4.04	1.54	37.89	395
Protska	South Africa	Namaque	47.00	1.7		3.8	0.00		1300
Anyos-Hidden Crask	Canada	N.Cordilloran	45,95	\$.37			0.17	9.92	195
Hanaoka Mine (total)	Japan	Japan atcs(Tethyan)	43.50	1.2	1.5	4,7	0.40	68.00	15
Aguas Tenidas	Spain	Hercyntan	41.00	1,3	0.91	3.1	0.50	37.00	320
Hongtoushan	China	Sino-Korean Platform	40.00	1.75	1	2,4	0.77	32.40	3000
Maleev	Kazakhstan	Ataldes (Hercynian)	40.00	2.3	1.3	7.5	0.75	75.00	390
Otlovskoyo	Kazakhistan	Allaldes (Hercynian)	40.00	2.4	0.5	2.1	0.80	47.00	392
Ashalo (#1)	China	Attayshan (Hercynides)	34.00	2.51		2.98	0.57	104.03	375
Xiaotieshah	China	Tarim-NorthQillan (Caled.)	34.00	1.26	3.39	5,33	2.28	126.20	440
Arctic (Brooks Range, Ak)	USA	N.Cordilloran	32.93	4	8.0	5.5	0.70	55.00	365
Rosebery	Australia	Lasman	32.70	1.00					
LIWU Determine	China	ridun, indosinian (Tethyan)	31.00	S	ourc	e: Ga	alley	et al.	(2007)

Mineralisation – consistent features

- Host
 - Turbiditic metasedimentary rocks
- Footwall
 - Mafic schist (ex-basalt) and sills
 - MORB-affinity ^{1,2}
- Hangingwall
 - Silica-iron rocks overlie ore
 - Mass flow with massive sulfide clasts at Tritton ³

4 5 6

Mineralisation – consistent features

- Mineralisation¹
 - Massive sulfide (cpy–py) zone
 - Pyrite-rich banded zone
 - Sub-economic veins in FW
 - Cu rich (elevated Au, Zn, Ag)
- Zoned alteration¹
 - Proximal Fe- to distal Mgchlorite in FW
 - Silicification of the ore zone
 - Carbonate-altered HW

Gilmore (2014, 2015) after Piercey (2007)

1 - Jones 2012

Geological Survey of New South Wales

Mineralisation – consistent features

Deformation

- Mineralisation deformed the same as turbidites
 - i.e. mineralisation predates Benambran Orogeny
- Some remobilisation of chalcopyrite
- Late brittle faults

Mineralisation – age evidence?

- Hosted by Early Ordovician Narrama Formation
 - Biostratigraphy
 - Supported by detrital zircon provenance¹
- Plus Pb isotope model ages^{2,3}
 - Mostly Late Cambrian to
 - Early Ordovician
 - Minor Devonian

Source: 1 – Fraser et al. (2014), 2 – Downes (2008), 3 - Huston et al. (2013)

Mines & Wines | Queanbeyan Bicentennial Hall, NSW | 2-

Research project

- Significance of silica-iron rocks
 - Formation? Are they exhalative?
 - Mineralised v non-mineralised
 - Exploration vector?
- Mineralisation
 - Formation?
- Tools
 - Sulfur isotopes
 - Petrophysics
 - Pyrite geochemistry
 - Laser ablation ICPMS

Silica-iron rocks

- Exhalative or exhalite
- Worldwide feature with VAMS
 - Time and space
 - Typically overlie ore levels
 - Laterally extensive
- Form from 'hydrothermal input to ongoing sedimentation'¹
- Geochemistry of magmatism influences type
 - Felsic systems = barite
 - Mafic systems = jaspers
- 1 Gibson et al. 2007

Slack (2010) USGS

Silica-iron rocks

- Only in Early Ordovician Narrama Fm.
- Always near mafic or ultramafic rocks
- Layered quartz and iron oxides
- Same structure as turbidites
- 57 to 94% SiO₂
- 2 to 10% Fe₂O₃
- Variable magnetite content but still most magnetic rocks regionally
 - Average magnetic susceptibility 1452 x 10⁻⁵ SI
 - Maximum 52 100 x 10⁻⁵ SI

Tottenham ore zone

Silica-iron rocks

- Those associated with mineralisation are geochemically distinct
 - Positive Eu anomaly when normalised to chondrite
 - Relative enrichment in REE
 - Elevated Cu and Ag
 - Narrow range of sulfur isotopes
 - 10.2 and 12.8‰
 - Reduced seawater sulfate source
 - (other silica-iron biogenic source)
- In summary ...
 - Silica-iron rocks are magnetic
 - Those associated with mineralisation can be discriminated geochemically

Mineralisation

- Sample from banded pyrite ore at Tritton
- Chalcopyrite within early pyrite
- Sn (Ag-In) with Cu
 - Magmatic source
- Ni v Co ratio
 - Mafic source
- U-Th rims
 - Seawater source

Mineralisation v silica-iron

- Pyrite geochemistry
 - As you go up sequence ...
 - Lower temperature
 - Increased sediment input
- Sulfur isotopes
 - Consistent across zones
- Deformation
 - Same fabrics and geometry
- Exhalative horizons formed from same process as mineralisation

Mineralisation - how did it form?

- Early Ordovician extension
- Hydrothermal cell driven by magmatism (MORB)
- Fluid from magma, seawater, sediments lacksquare
- Metal precipitation as cooled by seawater in sediment pile ${\color{black}\bullet}$
 - Subseafloor replacement
- Exhalites are spent fluids \bullet

Mineralisation - how did it form?

- A syngenetic origin volcanic-associated massive sulfide (VAMS)
 - Mafic-siliclastic¹ or pelitic-mafic-hosted (Besshi-type) Cu²
- Preservation aided by sediment pile and ongoing sedimentation
- Deformed in Benambran Orogeny
 - Remobilisation of chalcopyrite, not hot enough to effect pyrite

So how do you find one ... an exploration guide

- Stratigraphic corridor
 - Look in the Narrama Formation
 - FW mafic (MORB not OIB)
 - HW quartzite, exhalative
 - Use regional magnetic data
 - Most likely exhalative horizons
 - Look at REE, Eu, Cu, S-isotopes
 - Electrical geophysics
 - AEM / DHEM (e.g. Collins 2001)
- Structure
 - Regional-scale (F3) folding
 - Structural repeats?
 - Ore body geometry

Exploration guide

- Helix Resources Limited discovered Collerina VAMS in 2014
- Between Budgery and Tottenham
- GSNSW trend used to identify potential targets under cover

Source: Helix, ASX announcement 01/04/2015

Mines & Wines | Queanbeyan Bicentennial Hall, NSW |

Summary

- Girilambone Group hosts significant VAMS mineralisation
- Understanding the setting and style of mineralisation is critical to develop exploration models for further discovery
- Integration of geoscientific observations at different scales
- Communication between geologists
 - Government
 - Industry
 - Academia

Acknowledgments

- Geological Survey of NSW
 - Rosemary Hegarty, Cameron Quinn, Ian Percival, Michael Bruce, Gary Burton, John Greenfield
- Industry
 - Phil Jones (Straits)
 - Peter Muccilli and John Thievesson (Mincor)
- University of Tasmania

