

Lead Isotope Geochemistry: A Brave New World?

Graham R Carr CSIRO Exploration and Mining June 2013

Outline

- Traditional Use of Pb Isotopes in Metallogenic Studies
- Exploration Geochemistry
 - General Principles
 - Gossans and Residual Soils
 - Groundwaters
 - Partial Extractions of soils
 - Vegetation
 - U exploration
- The brave new world -
 - The cost factor can the commercial labs do better?
 - The confidence factor will companies use isotopes? SMEDG 26 June 2013

Pb Isotopes in Metallogenic Studies

- History of the Earth According to my favorite element Pb.
- Really a history of the fractionation of Pb, Th and U in the mantle and crust through geological time.
- The key information that Pb isotopes provide are:
 - Relative contributions of mantle-derived and crustal-derived
 Pb in rocks and ores
 - Any evidence of U/Th fractionation as a result of high grade metamorphism or the formation U enriched hydrothermal fluids.
 - Model age

Pb Isotopes

Thesis:

- In any geological terrain, mineralisation associated with a major hydrothermal event will have distinctive Pb isotope ratios that can be discriminated from minor mineralisation and from Pb derived from background rocks.
- The General Exploration problem is can we measure and interpret these fingerprints in common regolith geochemical samples – rocks, soils, vegetation, groundwater?

Pb Isotope Variables

• Basic Equation:

The Growth Curve Concept

• Growth Curve: Co-variation through geological time of a pair of Pb isotope ratios assuming a common, U/Pb (μ)

The Growth Curve Concept

The Mount Isa Growth Curves

Mount Isa Template

CODES Masters 2013

Relating Ores to Tectonics

"Other" Deposits

CSIR

Different fluids and different source rocks, or....a small subset of the same source rocks.

Exploration Prospect – Mount Isa

- Large, outcropping gossan in Lower Proterozoic rocks of the Mount Isa Western Fold Belt
- Geochemically highly anomalous with % Zn and Pb

Pb Isotopes in Regolith Materials

- Have greatest value in :
 - discriminating and eliminating the "False Positive" geochemical anomaly
 - Having greater sensitivity than absolute abundance data in detecting metal derived from a hidden/buried ore source
- Greatest inhibitors to use:
 - Cost
 - Anthropogenic contamination

The Two Dimensions of Pb

ISOTOPES

SMEDG 26 June 2013

The Problem is Cover

Basement depth > 1000m SMEDG 26 June 2013

Pb Isotopes in Exploration Through Cover

- Problem detect and discriminate subtle geochemical signals above buried ore systems
- Regolith materials that can be used for geochemistry:
 - Soils partial extraction geochemistry
 - Vegetation
 - Groundwater
- Pb isotopes can be used to discriminate "anomalous" from "background" in each of these media – also detect anthropogenic contamination.

Pb Isotopes in Exploration Through Cover

- Partial extraction techniques to determine soil metal concentration are commonly used – but the jury is out on their applicability
- Pb isotopes are potentially a valuable discriminator to assess partial extraction anomalies
- The technique is based on the ability of isotopes to measure the proportion of end member components with distinctive Pb isotope fingerprints in a mixed system.

Pb Mixing Model

Can be applied to any regolith sample – rock, *soil, groundwater, vegetation*.

CODES MASTERS 2013

- The possible sources of Pb in a regolith sample are:
 - Crystallization Pb that is, Pb incorporated in the primary mineral lattice at the time of formation
 - Radiogenic Pb Pb that have derived from the decay of U and Th in the period since crystallisation
 - Regolith Pb labile Pb that has been transported to the sample through regolith processes.

Sources of Pb in a Regolith Sample

- The use of Pb isotopes in soil geochemistry requires a knowledge of the target and background isotope populations
- In an initial orientation survey both total and partial extractions are required.
- Follow up surveys can be based just on partial extractions

- Soil contains "Fixed" and "Mobile" components. The boundary between these will vary for different soils and depends on the strengths of the acid leaches used to liberate the metal.
- In any one sampling exercise where the media are similar across the terrain and the analytical procedures standardised, the "Background" population will incorporate a proportion of Pb fixed in the sample (Pb_{BF}) and Pb that has been mobilised by weathering from within the sample or from the surrounding background rocks (Pb_{BM}).
- It may also contain a component of mobile Pb that has been derived from a Target source buried beneath the cover rocks - or through anthropogenic contamination (Pb_{TM})!

 From the generalized mixing model we can derive equations to calculate the concentration of each Pb component of the soil sample:

 Where Pb_{Tot} and Pb_{Par} are the measured total and partial Pb concentrations, Sig_{Tot} is the Pb isotope signature of the "total" solution

Partial Extraction Geochemistry

- Anomalies *appear* to form in soils over covered mineralisation via processes that transport target and indicator elements through the covered sequence to the near surface.
- Possible mechanisms for this transport include:
 - Geogas carrier
 - Electro-chemical potential
 - Interaction of geogas and soil
 - Interaction of soil and groundwater
 - Residual effects
 - Bioturbation
 - Biological migration

Research Procedure

- Thesis:
 - Pb isotopes in soils potentially retain "a memory" of their source – thus we can determine whether the Pb has derived from hidden mineralisation or from a non-mineralisation source.
 - We can extract the most mobile Pb from most samples at very low concentrations and differentiate this potentially transported Pb from Pb that is residual in the soil minerals.
- Procedure:
 - Undertake case histories at sites where there is known covered mineralisation and where there is no anthropogenic contamination
 - SMEDG 26 June 2013

Conclusions of Study

- 1. We *have not* seen isotopic or trace element anomalies through thick (> 50m) cover.
- 2. We *have* seen clear, very sensitive isotopic anomalies through shallow cover over mineralisation with very subtle or no trace element anomalies.
- 3. We have seen *anthropogenic contamination* in a variety of situations where it was not expected and which place in doubt the conclusions of many previous studies.
- 4. We *can recognise* anomalies associated with anthropogenic contamination.
- 5. We have *not seen* anomalies that can be ascribed to vapour transport

The Pb Soil Model – CASE HISTORY HYC

- HYC is a sediment –hosted massive sulfide deposit of approximately 400 Mt in the Proterozoic of the Northern Territory.
- The host unit sub-crops beneath alluvial sediments but the ore is deep within the stratigraphy.
- Numerous attempts have been made to detect the mineralization in the overlying regolith.

HYC Deposit

HYC Deposit

HYC – Pb Isotope Data

HYC – Test line downslope from a 60

HYC – Test line downslope from a 60

HYC – Test line downslope from a 60

HYC Soil Pb Model Components Surface Samples

HYC Soil Pb Model Components 30 cm Samples

HYC – The Lesson Learnt

- Pb isotopes are very sensitive to labile, "target" Pb that cannot be discriminated by normal geochemistry
- This will apply also where the source is geological – not anthropogenic
- Case history studies to determine the effectiveness on novel geochemical techniques anywhere near historic mining or exploration is very very problematic!

Pb ISOTOPES – A VEGETATION EXAMPLE

Vegetation 6km from an Archaean VMS Mine

Partial Extraction and Vegetation

Groundwater in vicinity of Archaean 👐 VMS deposit

MIXING MODEL SENSITIVITY

Theoretical Anomaly

Distance

34th International Geological Congress, Brisbane, August 2012

Signature Model Sensitivity

Anomaly/Background

Basement depth > 1000m SMEDG 26 June 2013

Background Populations Archaean

CSIR

Analytical Precision

- MC-ICPMS
- Conv. TIMS
- HR-ICPMS
- Quad-ICPMS

16.935+/-0.006 (+/- 0.035%) 16.929+/-0.023 (+/- 0.14%) 16.806+/-0.044 (+/- 0.26%) ????? (but probably ~ 0.5%)

How Much precision do we need?

Precision of 1% would represent:

- •2.5% of the total expected range of data for Archaean soils,
- •5% of the total expected range for Proterozoic soils,
- •17% of the total expected range for Palaeozoic soils.

Pb Isotopes – What we need to do

- To develop a robust exploration technology we need to:
 - Reduce cost of analyses very large datasets with lower precision rather than small datasets with high precision , <\$50 per sample
 - Undertake case histories to validate the technique in greenfields terrains – minimal to no drilling – no mining.