

Minerals Down Under: A new National Research Flagship

Presentation to SMEDG 29/11/2007 Graham Carr

Content of talk

1. Mineral exploration research landscape in Australia

 Including the roles of the Federal Government, State Surveys, Universities, CSIRO, exploration companies large and small, contractors and consultants.

2. The National Flagship Program

- Vision, scope, collaboration and funding
- 3. Minerals Down Under The Science
 - **Exploration**, mining, processing, licence to operate

Mineral Exploration Research Landscape

- In a buoyant industry, government funding is at risk because of the argument:
- "If the industry is doing so well, why should government fund research?"
- The argument must be made that international companies can invest exploration dollars around the globe and that there needs to be government intervention to guarantee investment in Australia.
- This argument has been carried and won over the past few years by State and Federal Geological Surveys and most recently by CSIRO.

CSIRO Minerals Down Under: a new national research flagship

The Message

- 1. The Value of the Industry to Our Nation – demand for commodities will continue.
- 2. The Risk that this value will diminish significantly over the next decades.
- 3. Research and the provision of fundamental new forms of geological knowledge of Australia can significantly reduce this risk.

What cars are made of

(after Bo Hedberg)

- 1000 kg steel/iron
- 11kg copper
- 19 kg lead
- 8 kg zinc
- 38 kg glass
- 53 kg aluminium
- 232 kg rubber
- 63 kg plastic / other
- <u>1425 kg Total</u>

- 2250 kg iron ore
- 1180kg copper ore
- 435 kg lead ore
- 326kg zinc ore
- 75 kg quartz
- 254 kg bauxite
- 444 kg crude oil
- 113 kg various
- <u>5077 kg Total</u>

Australian mineral production

Mudd, 2005

Driver: Australian ore grade

Mudd, 2005

Driver: Australian waste rock and tailings production

Driver: Australian workforce

Year

Driver: Australian workforce

Year

However, between 2005 and 2015 the workforce will need to increase by 50% (70,000 people) to sustain the sector (MCA 2007-08 pre-budget submission, December 2006)

Driver: Exploration expenditure trends

Driver: Who's exploring?

National Flagship Program

• CSIRO's research is delivered in three major areas:

- 1. Priority-driven core research
 - Science outcomes for industry and community
 - Generally single Divisions, but includes a number of major cross-Divisional activities

2. National Research Flagships

- Strategic initiatives that aim to make a sustained contribution to national economic and social growth and sustainability
- Multi-divisional and with major external partners
- 3. The Emerging Science Initiative
 - Developing new science capabilities e.g. nano science, complex systems

Flagships – 2004 to 2007

• Flagships

- In Australia research funding is becoming ever more focussed on major National Challenges
- 6 such Challenges were defined in 2004:

Energy Transformed

Food Futures

Light Metals

Wealth From Oceans

Preventative Health

Water for a Healthy Country

Additional Flagships in 2007

• In 2007 Budget, 3 more Flagships were announced:

- Climate Adaptation
- Niche Manufacturing
- Minerals Down Under

The Minerals Down Under Flagship will assist the Australian minerals industry to exploit new resources with an in-situ value of A\$1 trillion by the year 2030, and more than double the size of the associated services and technology sector to A\$10 billion per year by 2015.

Recent Federally Funded Exploration Research Initiatives in Australia

Initiative	Funding Source	Scope	Period	Investment (Total after leverage)				
GA Energy Security Package	DITR	Integrated Crustal Scale Knowledge	2006-2011	\$59 (\$59)				
CODES ARC CoE	DEST	Ore Systems Studies, Geometallurgy	2005-2010	\$15 (\$30)				
NCRIS AuScope	DEST	Research Infrastructure	2007-2011	\$34 (\$130)				
Minerals Down Under	CSIRO	Exploration Technologies	2007-2011	\$35 (\$58) new \$150 (\$250) redirected				
CRC DET (proposal)	DEST	Drilling & targeting technologies	2009-2016	\$30- 40 (\$75 - \$100)				
TOTAL			2005-2016	~\$160 (\$350)				

Flagships are different because.....

- 1. Larger scale projects
- 2. More multi-disciplinary
 - Cross Divisional KPI

3. More collaborative

- Collaboration Fund (\$114 million over 4 years)
- Flagship Clusters collaboration between CSIRO, Unis and other Govt agencies
- 4. Greater external oversight
 - Each Flagship has an Advisory Committee

5. Structured Engagement Strategy

- Close relationship with Geological Surveys
- Focus on improving engagement with SME Explorers and contractors
- Strategic relationships with the big end of town

6. Increase the skilled workforce – education and training

The Core Components of Minerals Down Under

Discovery Theme Goal

To facilitate discovery of \$250 billion* of new mineral resources in Australia by 2025

* Estimated by value of contained metals within the discovered resources based on long term commodity prices

"3D-4D" becomes standard practice in Australian mineral exploration

Streams:

- **1** Mineral System Life Cycles and Targeting
- 2 Terrane-scale Technology Applications
- **3 3D Mapping Technologies**

The Core Components of Minerals Down Under

THEME 1 STREAM 1.1

Discovering Australia's Mineral Resources Mineral System Life Cycles and Targeting

Stream Goal

Reduce mineral discovery cost in Australia through development and application of new technologies and understanding for area and target selection

Transformational Science

- "Computational Laboratory" for testing conceptual models and understanding processes of ore body formation and evolution
- Impact of biota on all geochemical behaviours in plants and the nearsurface

Capability Growth

- Advanced numerical modelling system for all processes in earth's crust
- Biogeochemical capability for regolith materials
- Synchrotron science for extreme chemistry and mineral mapping

Present Partners

Auscope, pmd*CRC, CRCLEME, GA, iVEC

Prospective Partners

Australian Universities, State Geological Surveys, AMIRA, NASA, BGS

Leverage existing work

- Build on success and capabilities of CRCLEME and pmd*CRC
- Ore system understanding for new types of ore deposits (e.g. Ni)
- Thermochronology for new targeting tools (e.g. diamonds)

Deliverables

- New technologies and techniques to increase targeting successes
- Toolkit of advanced computational modelling capabilities able to simulate ore-related processes at all scales

CSIRO Minerals Down Under: a new national research flagship

Micro PIXE quantitative element mapping of a phyllode

Fe

Highest Concentration Zn 0.199% Cu 859 ppm Fe 1.04% Ca 22.5 % Mn 0.517% Low High

CSIRO Minerals Down Under: a new national research flagship

THEME 1 STREAM 1.2

Discovering Australia's Mineral Resources Terrane Scale Technology Applications

Stream Goal

Contribute to an increase in Australia's share of global mineral exploration expenditure through provision of data infrastructure and new types of data and expertise to government agencies

Transformational Science

- Full interoperability leading to efficient pre-competitive geospatial data exchange for exploration
- Hyperspectral technologies provide understanding of large scale mineral alteration in terranes

Capability Growth

- Improvements in hyperspectral instruments
- Advanced systems for data delivery
- Disseminating capabilities through embedded researchers

Present Partners

Auscope, Open GIS Consortium, GA, State & Territory Geological Surveys

Prospective Partners

British Geological Survey, US Geological Survey, BRGM, Geological Survey of Canada etc.

Leverage existing work

- SEEGrid initiative is progenitor of Auscope Grid (a large part of Auscope investment plan)
- GeoSciML delivery of complex geospatial data in common XML format
- Current HyLogger[™] for Auscope Virtual Core Library

Deliverables

- Auscope infrastructure delivery
- New improved data delivery systems, methods, protocols and universal data standards
- Next generation mineral maps

National Virtual Core Library

Outcome of AuScope (NCRIS)

• Deliverables are:

- An automated hyperspectral core logger (HyLogger[™]) in every state core library – delivered progressively from mid 2008 onwards.
- Algorithms and software to interpret mineralogy from spectra
- Data storage and knowledge access capabilities for research (& industry) users.

NCRIS - National Virtual Core Library

An automated hyperspectral core logger in every State Geological Survey core library

CSIRO Minerals Down Under: a new national research flagship

The HyLogger™

- Semi-automatic, robotically-sampled, visible & infrared, oxide carbonate and hydroxide spectrometers
- Spectrometer: ~8mm resolution. Continuously-scanning
- Digital imagery ~0.1 mm resolution
- Measurement: ~700 800 m per day
- Laser profilometer for core quality & breaks
- Outputs with TSG software
 - Mineralogical identification & abundance indices in various formats exportable to mine planning packages
 - Linescan & virtual core tray images, drill hole mosaics
- Models
 - HyLogger I 2001-2005
 - HyLogger II 2006 (new technology)
 - HyLogger III 2008 (integrated with TIR)

CSIRO Minerals Down Under: a new national research flagship

HyLogger-I in the Kalgoorlie Core Library in 2004

HyChips™

- Comprises: Automated ASD spectrometer, small robotic table, lighting, custom telescope and step remover, control computer, digital camera.
- ~10 mm samples collected in step-and-measure mode Can be used for core but slower
- 1-6 chip trays per pass
- 20-120 samples per pass
- 4 minutes for 3 trays
- Up to 2500-3000 samples / day
- Replicate measurements per bin
- Outputs as for The HyLogger
 - Optional digital photography & profilometer
 - Multiple holes per file
- Models
 - HyChips-1
 - HyChips-3
 - HyChips-6

The TIR-Logger

Robotically-sampled, Fourier Transform Thermal IR (FTIR) reflectance framework-silicate spectrometer

- 5000 14000 nm range. Average spectral resolution ~40 nm
- Spectrometer
 - ~14mm spatial resolution sampled every 4 mm
- Digital imagery
 - ~0.1 mm resolution
- Measurement rate
 - ~700m per day
- Laser profilometer for core quality & breaks
- Outputs with TSG software
 - Spectral parameters and relative mineral abundance indices in various formats
 - Linescan images, virtual core tray images, drill hole mosaics
 - One drill hole per file

Prototype completed late 2005 with MERIWA support

Spectrometer & linescan camera houşing

The TIR-Logger in the Kalgoorlie Core Library in 2005

HyLogging Systems - 2

As new HyChips 6-2 2006

Turnkey HyLogging Facility April 2007

Containerised HyChips 6-2 2007

Operational Set-up

Demostrator (NVCL.CSIRO.au)

Auscope National Virtual Core Library Demonstrator

ogin

This website requires cookies and JavaScript and its formatting is designed to be compatible with most recent version browsers. © Copyright CSIRO Australia, 2007 Legal Notice and Disclaimer and Copyright Comments, questions, or problems? Contact the webmaster

Selected hole = WTB5

Login

🖃 Home

(**

Getting Started Database info Feedback blog Data donors Core libraries Logger Locator Algorithm Definitions Sensor Definitions NVCL Research Links ⊟ Searching Drill-hole Мар Scalar Report **Research Projects** BHole : WTB5 Location Scalars TSA Results tray 2 ⊞ tray 5
 ⊞ tray 7
 tray 10 tray 11 tray 12 ⊞ tray 13

Dim note Details.										
WTB5										
Hole name	WTB5									
Project	Teutonic Bore									
Owner	GSWA									
Machine	HyLogger-1									

Scanned date 9/17/2004

DB entry date 5/17/2007

19

150

0

Π

Π

21695

28°24'50" S

121°8'30" E

E: 317969.28 m

N : 6855542.66 m Zone : 51 S WGS 84

upload new report

view reports

Jon Huntington

106.94m to 249.9m

Drilled date

Depth

Trays

Sections

Samples

Latitude

UTM

RL

Azimuth

Reports

Analyst

Inclination

Longitude

Drill-bala Dataile:

Mosaic

Trays increment left to right & top downwards. Click any individual tray for enlargement.

Auscope National Virtual Core Library Demonstrator

the http://scotchbonnet-nm/Details.aspx?coreid=933										💌 🎲 🗶 Google			. م		
le E	Edit Vie	w Favorite	s Iools H	elp											
•	Google	C -		😽 Go 🕂 🧒	S Ø 🗗 - 🗘 🛙	Bookmarks+ 🔒	Popups okay	FCheck - 🔨 A	utoLink + » (Settings•	8	-			
-44	88.	Drill-hole	Details ×	🕬 Radio Australia - 1						_		0 · 2	+ (南) +	EP Page *	() Tools ▼
Alt	eration		1	show S	calar plot	pe Scale 25%	RMean mica	RMean X	Alteration		TIR Qtz		Major		
023	y start	End	image Maartine Mit			intensity	wavelength	albedo	classes	6500 pfit h	pfit d		lithology	Alterat	
4	0	114,21			http://s	3		an annaithe	- Chttp	o://s 🔲 🗆 🔀				-	_
3	114.2	120.552	il de la		Homblende MgChlorite Teflen	Section 2	1.1.2.1.070	<u></u>	E Cal	hl+parag bonate	Sand Street St.				
4	120,55	2 127.837	. 7		Muscovite Dolomite		·	1. 16 -	Par NU	acovite agonite LL	Q .4-4				
5	127.83	7 135.126			WhiteMarker Wood		_	-	Internet Ma	sc+carb+chlor	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_			
6	135.12	6 142.339	the factor of the		IsaYellow Gypsum PlasticChipTray	01		1100	Close		S. Taka S.				
7	142.33	9 148.715			Paragonite Halloysite FeChlorite			1							
8	148.71	5 156.911			Phengite Ankerite	120		0.000	ter 1		The Alexand				
10	156.91	1 171.62		and and a	V Chrywegergenen	-		+ 22	and the second second		11.13.3				
11	171.63	178.973	WC 110 27	State Sel		14 19 19	-	142 1 1	1.2.46.96	and the second	N. S. M. Date				
12	178.97	3 186.02		Canada Sa	BUSSIE	en de la com	Sec. 945	1		The state	And the second	-		-	
13	186.0	193.341	1-17	Acres and	A Marshert	Bernard	-	1.0	1.2	TO MAY LA	Contraction of				
14	193 34	1 200.782		We state		1000	474.1			tena grada a	NUMBER OF	-			
15	200 78	2 207 001	Tradition Services		A LEAST AND A		1.4	100	Contract of a contract	STATES.					-
10	207.00	1 045.00	and the second second				1 1 1			a (an) year of a loss	ALCONTRACT ON A				3
10	201.99	1 210.29			in the second	the set	15-124	1-1-1	autona form						
17	215.29	222.83		i ni mite	and the second	- friend on		-	and the second second		Jed				
18	222.83	3 230 12	and the second		1 Marthaligare	the state	10.000	1.00	We Stating It	- 000-	-000-				
19	230.1	237.619	4	a straight			1.1		and the construction						
20	237.61	9 244.87	2		. Hitte	and a subscription of the	Contractory of	1.00	1.						
21	244.8	249.895			· Walter	-10-24	and stands						_		

📓 🌯 100% 🔹 💡

v

Mineral Map of Australia

- "Next Generation Mineral Mapping Initiative"
- "Big Footprints" alteration
- Over 150 1:250 000 scale mapsheets covering brownfields and greenfields exploration areas across Western Australia alone.
- With current available airborne capabilities it would take >30 years to generate an Australian mineral map
- Gap filled by satellite systems?

"Regional" Retrograde Alteration : Broken Hill (HyMap)

Broken Hill Published Geology

From Geoscience Austra

HyMap : White Mica Composition

Retrograde hear zones

THEME 1 STREAM 1.3

Discovering Australia's Mineral Resources 3D Mapping Technologies

Enable Australian geoscientists to operate consistently in 3D by 2025 through development of new software for efficient interpretation of existing data types & new geophysical tools for defining 3D subsurface geology

Stream Goal

Transformational Science

- Development of SQUID airborne tensor magnetometer (GETMAG II)
- Joint geophysical inversion for all geophysical data types

Capability Growth

- Geophysical equipment and inversion techniques
- Multi-scale lithological, mineralogical and structural interpretation and visualisation in 3D
- New hyperspectral algorithms

Developing advanced geophysical tools and enabling technologies for 3D interpretation

Present Partners

Auscope, pmd*CRC, CRCLEME, DSTO

Prospective Partners

Intrepid Geophysics, BRGM, Australian universities, UBC, State & Territory Geological Surveys

Leverage existing work

- Mineralogical and chemical core logging (Hylogger and LIBS)
- Current generation 2D and 3D geoscience data modelling tools
- Developmental work on next generation SQUIDs

Deliverables

- Toolkit of computational techniques for fast production of 3D geological maps
- GETMAG II and other geophysical imaging techniques, including inversion methods

Computer Aided Geological Interpretation (CAGI)

- VISION: To enable geoscientists to rapidly integrate all geophysical data into a 3D geological interpretation.
- Based on GeoModeller and UBC-GIF codes and CSIRO EM Inversion Codes
- Components of the project are:
 - Workflow analysis
 - Inversion research
 - Physical properties research
 - Linking the codes
- Proposed collaboration between CSIRO, BRGM, Intrepid Geophysics and UBC_GIF software

SQUID Technologies

- Current Applications in land EM and airborne Magnetics
- Potential applications in down hole sensors

Tallawang magnetite mine

Location, plan and section showing Drill hole intersections

Plan and section with total magnetic intensity map

TMI vs tensor deconvolution (performed on the TMI)

The Concept of Additional Value From Drilling

Enhanced automated core logging:

- Full Mineralogy
- Geochemistry XRF, LIBS, NAA
- Petrophyscal Properties
- Structure
- Geometallurgical Information
- Strategies for using chips
- Strategies for down hole
- Strategies for measurement while drilling

Proposed New CRC "Deep Exploration Technologies"

Proposal An Industry-led Bid for a New

Cooperative Research Centre for Deep August 2007n TechnologiAMIRA International **CSIRO Exploration** and Mining

For internal use by recipient only. Disclosure to others prohibited. Intellectual property rights vested in **Researcher**(s) not to be used without licence.

AMIRA International Limited ACN 004 448 266 ABN 60 176 687 975 Level 2 271 William St Melbourne VIC 3000 Australia Phone: +61 3 8636

The mission: Deliver innovative geological insights and technologies that will have a positive impact on discovery rates for economic deposits under cover in greenfield and brownfield environments. Possible Goals Include:

- Goal 1 Develop better, safer, higher value drilling technologies
- Goal 2 Develop innovative data fusion and inversion methodologies that can be used in data-poor or sparse data areas
- Goal 3 Develop new deep targeting geophysical methods
- Goal 4 Develop new deep-probing geochemical technologies
- Goal 5 Deliver top-class graduates

C

Why a new CRC?

- Address big, difficult science issues around enhancing discovery rates in Australia.
- Maintain Government Investment in Exploration R&D the two existing exploration-focused CRCs (CRC LEME & pmd*CRC) will cease to exist as from 1 July 2008.
- Leverage University, CSIRO and Industry funds to provide a critical mass of research capacity in Australia.
- Provide resources and a focus for training the next generation of exploration professionals

Future Mine

THEME 2 STREAM 2.1

Transforming the Future Mine Enhancing Knowledge from Drilling

Stream Goal

To significantly reduce the cost of drilling and enhance the quality and quantity of information obtained from boreholes through the design, testing and delivery of effective drilling and down-hole data acquisition

Transformational Science

- A high frequency percussive/rotary action hard rock mole exploiting tensile stresses and based on a detailed understanding of the physics of rock-bit interaction & adaptive drill control
- New sensor development to allow measurements while drilling & advanced next generation down hole logging systems

Capability Growth

- Development of component technologies to be integrated into novel drilling tools
- Application in mining and exploration of technologies derived from oil & gas industries

Delivering worldclass scientific and engineering solutions to transform the drilling process

Present Partners

Nat. Inst. Adv. Industrial Sci. & Tech. - Japan

Prospective Partners

Strategic partnering with AMIRA, industry (drilling manufacturers and mining houses), academia (Curtin University) and other research organisations

Leverage existing work

- Smartcut advanced abrasive resistant cutting tools comprising thermally stable diamond composite bits
- Sweetspot intelligent control system to optimise drilling efficiency
- Smartrods fibre composite drill rods

Deliverables

- Concept design for enhanced resonance hard rock drilling mole
- New logging technology to costeffectively measure geological and mining rock mass characteristics
- Fibre composite coiled tubing

