

Geological potential for magmatic and orogenic mineral systems in the southern New England Orogen

Discoveries in the Tasmanides 2017 8 September 2017

John Greenfield on behalf of:

Phil Blevin, Katie Peters, Greg Partington, Peter M. Downes, Michael Nelson & Brad Williams

Introduction

- GSNSW is embarking on a statewide mineral potential mapping project
- The results will be used to trigger land-use referrals
- Will replace the 'potential' layer in the current Mineral Resource Audit mapping
- Kenex won bid for spatial analysis (Partington et al. 2007 Mines & Wines IR Au)

Why Southern New England Orogen?

- Economic potential exists for key mineral systems
- Land-use pressure
- Good metallogenic mapping, 25k series geo mapping
- Seamless Geology and derivative maps available

Which Mineral Systems?

- 1. Intrusion-related tin-tungsten (IR Sn-W) <u>GS2017/0617</u>
- 2. Intrusion-related gold (IR Au) GS2017/0618
- **3. Orogenic gold-antimony** (orogenic Au-Sb) GS2017/0619

Recipe books:			Creating opportunities in the
	_	A mineral system model for orogenic Au southern New Engl	
A Mineral System Model for Intrusion-Relat	ed Gold Deposits	by	
of the Southern New England Or	rogen.	Peter M Downes	
by		(Senior Geologist — metalli	
		MinSys NSW grou	-
Phillip L Blevin			-
MinSys NSW group		August 2017	
August 2017		GS2017/0619	
G\$2017/0618		Au sources for SN	NEO
Intrusion-related Gold Native der Therpark Renter, 1997 Breccie Piers Piers Der der der Therpark Lawer Massenindet Lawer Massenindet Lawer	100 00	Possible fluid sources include: mantle- derived; crustal-derived; magmatic; and/or metamorphic de-volatisation Data for SNEO suggests multiple sources:	Sb-W-(Hg)
Distal veins Bharn Bharn registacement		6 ³⁴ S data for Hilgrove and mineralisation to the nodel for Palaeozoic Sn-W deposits of the thern New England Orogen by	Au-SD Au-AS
	Philli	p L Blevin and Peter M Downes	
		MinSys NSW group	eral deposit models, orogenic A ration, mineralogy, isotope, fluid
Keywords: New England Orogen, mineralisation, minera		August 2017	ation criteria,
Au, geochemistry, deposit features, alteration, mineralogy		August 2017	
va good anamany, opport remove, anomou, anneradge	- 500 m Pb-Zn to Decreasing temperature Sn Stockscheiders W Greisen W	Aleration Aleration Hapo Hapo Hapo Hapo Hapo Hapo Hapo Hapo	
		en, mineralisation, mineral deposit models, intrusion-related bosit features, alteration, mineralogy, isotope, fluid inclusion, leria,	9

Data: map-based

- Seamless- reactive rocks
- Seamless- igneous metal fertility
- Seamless- fault attribution
- Seamless- Metamorphic map

Seamless geology

Geophysics- rad, gravity, mag + worms

Data:point-based

783 Radiometric ages

- 6,788 Whole-rock geochem
- **11,160 Mineral occurrences**
- 12,150 Thin-section descriptions
- 17,703 Structural readings (including vein-sets)
- 28,719 Drilling lithology logs
- 42,633 Field obs

241,478 Assays (drillhole, stream sed, rock-chip, soil)

Spatial Analysis: weight of evidence

- Create study area extent of seamless geology 50 x 50 m grid
- Select training points (10-20 for NEO; full spectrum of mineral system)
- Select unit cell 1 km² for all models (~ extent of mineral system)
 - -- This equates to a province to camp scale analysis --
- Determine prior probability (odds of a training deposit in a unit cell)

IR Sn-W = 0.000101; **IR Au** = 0.00011; **orogenic Au-Sb** = 0.000236

- Create predictive maps and perform spatial analysis
- Selective maps
- Run mineral potential model

Model of Mineral Prospectivity Highlighting Exploration Targets

Intrusion-related Sn-W in SNEO: mineral system

Mineralis Alor Cos

- Stockwork/Sheeted vein style Torrington (eg. Taronga, Great Britain), Pound Flat
- Disseminated greisen Fielders Hill
- Breccia pipe Glen Eden
- Skarn/carbonate replacement Attunga (Kensington W)

Found in the apical regions of strongly fractionated, reduced I-type felsic granitoids of former filescic age (254-245 Ma)

Stockscheiders (Haapala et al. 2007)

IR Sn-W Training Points

50

100

IR Sn-W training points

	Name	Metal District	major	Commodity Minor	Mineralisation Style	
1	Attunga tungsten deposit (prospect 1)	Attunga	Au, W, Mo		W skarn	
2	Butlers lode	Torrington	Sn, W	Pb, monazite, Ag, Zn	Sn-(W) vein	
3	Dutchmans & Harts	Torrington	Sn		Sn-(W) vein	
4	Elsmore tin lodes	Elsmore	Sn	Bi, W, Ag, Au	Sn-(W) vein/greisen	
5	Fielders Hill south	Torrington	W, Bi, topaz - industrial	Sn, Cu, fluorite, cryolite, U, Au	topaz-W greisen	
6	Fitzpatrick and Spillers deposit	Bingara extended	Sn		Sn-(W) vein	
7	Glen Eden mines	not assigned	Mo, W	Sn, Bi, fluorite, cryolite, Cu, beryl - industrial	Mo porphyry	
8	Great Britain deposit	Emmaville	Sn		Sn-(W) vein	
9	Kensington Scheelite Deposit	Attunga	W		W skarn	
10	Leviathan lode	Tingha	Sn	As, Cu, W	Sn-(W) vein	
11	Lode Hill	not assigned	Sn		Sn-(W) vein	
12	Pound Flat prospect	not assigned	Sn, As	Zn, Pb, W, Cu	Granite-related polymetallic veins	
13	Taronga deposit	Emmaville	Sn	Cu, As, Ag, Zn, W, Pb, Mo, Bi	Sn-(W) vein	

Fielders Hi But utchmans & Harts Taronga deposit Pound Flat prospecto Fitzpatrick and Spillers deposit Glen Eden mines Elsmore tiñ lodes Leviathan lode Lode Hill Kensington Scheelite Deposit Legend O Training Points · Sn and or W Deposits

Ν

IR Sn-W: Taronga/ Emmaville district

Resource: 36.3Mt @ 0.16%Sn for 57,200t Sn, 0.07%Cu for 26,400t Cu, 3.8g/t Ag for 4,400,000ez Ag

Glen Eden mines

Sketch plan of Baker's Hill and Glen Eden molybdenite deposits, Parish of Boyd, County of Gough.

A-Quartz felspar porphyry.

- B-Quartz felspar porphyry altered to greisen and impure silica. containing numerous quartz veins with tinstone, wolfram, and molybdenite.
- C-Open cut and shafts with wolfram, tinstone, and molybdenite.

EC Andrews 1916

- Mo-W-(Sn-Bi) pipe-like felsic porphyry
- Brecciated, greisenised
- Intruded by mineralised quartz-vein stockwork

IR Sn-W: Spatial Correlation Results

- 88 spatial variables identified
- Resulting in 98 predictive maps being created and tested
- The spatial correlations were mostly positive with 91 predictive maps having contrast values > 1
- 24 maps were chosen for possible inclusion in the final model
- The final model used 18 of these maps
- All contrasting parts of the mineral system represented
- Other models can be run using different combinations of the 24 maps selected or including others with positive correlations
 Planning & Environment

IR Sn-W: final predictive maps

Planning & Environment

Q

IR Sn-W: results

- Prospective areas are defined as having a post probability higher than the prior probability (0.000101)
- Prospective area covers 6% of the study area
- Success rate = 99.5

Planning & Environment

- Training points all fall in the highly prospective area (lowest post probability is 0.736587)
- Highly prospective area (above 0.736587) covers 1.2% of the study area

Intrusion-related Au in SNEO: mineral system

- Associated with W-Mo mineralised suites
- Au occurring within a distal metallogenic zonation
- weakly to moderately oxidised I-types , high-K, low K/Rb ratios and show strong fractionation trends, low S magmas keep Au in melt
- not oxidised enough and too evolved and/or felsic to be associated with Cu; too oxidised to be associated with significant Sn
- Sheeted veins, disseminated greisen ADDARES, dykes: associated with minor W-Mo±Sn occurrences and Wascheel KIBSTON mineralisation

IR Au training deposits

	Name	Metal District	Commodity Major	Commodity Minor	Mineralisation Style
1	Brown's Reef	Rocky River	Au		Granite-related gold
2	Frazers Find	Rocky River	Au	Ag, Sb	Structurally controlled Sb- Au
3	Hortons mine	Timbarra	Au		Granite-related gold
4	Hudsons's/McCrossin'	Rocky River	Au		Granite-related gold
5	Klondyke reef	not assigned	Au, As		Granite-related polymetallic veins
6	Martin's Shaft	Rocky River	Au	Sb	Structurally controlled Sb- Au
7	Poverty Point mine	Timbarra	Au	Mo, Bi	Granite-related gold
8	RMT	Timbarra	Au		Granite-related gold
9	Timbarra (Big Hill mine)	Timbarra	Au		Granite-related gold
10	Seven Hills South 1	not assigned	Au		Granite-related gold
11	Seven Hills South 2	not assigned	Au		Granite-related gold
12	Seven Hills Central	not assigned	Au		Granite-related gold
13	Seven Hills North	not assigned	Au		Granite-related gold

	100.00
IR Au Trainging Points	
RMT Poverty Point in Hortons mine Timbarra (Big H Seven Hills North	nine lill mine)
Seven Hills Central O O Klondyke reef Seven Hills South 1 Seven Hills South 2	
Frazers Find Hudsons'S/McCrossin' Martin's Shaft Brown's Reef	
Legend O Training Points • Au Deposits 0 50 • 100	N
220000 280000 340000 400000 460000	520000

J Timbarra

- Disseminated gold in the roof zone of a highly fractionated, high-K, calc-alkaline, Itype granite
- Mineralisation and alteration capped by microgranite and aplite
- negligible quartz veining, minimal sulphides

Resource: **13.65 Mt @ 0.95 g/t gold (417000 oz)** Mustard, et al., 1998

Seven Hills/Kingsgate

Gold-bearing greisenised granite from Seven Hills

Moly in Qtz pipe from Kingsgate Mo-Bi prospect

Partington et al.

IR Au: final predictive maps

Knox-Robinson & Wyborn 1997

GIR Au: results

- Prospective areas are defined as having a post probability higher than the prior probability (0.00011)
- Prospective area covers 8% of the study area
- Success rate = 99.5
- Training points all fall above the prior probability (lowest post probability is 0.000723; next lowest is 0.999992)
- Highly prospective area (above 0.937254902) covers 1.4% of the study area

Crogenic Au-Sb: mineral

- Structurally-controlled vein deposits
- A feature of the SNEO is the change in metal endowment from Au–As, to Sb–Au–As–W to Sb–W– (Hg)-dominant systems
- Two gold mineralising orogenic events- Late Permian Hunter-Bowen, mid-Triassic Esk Cycle
- mineralisation ~syn- to post-peak metamorphism
- Peel and Demon faults important 1st order structures
- Great serpentinite belt and deep marine pyritic shales are potential sulfur/gold sources

Orogenic Au-Sb example in SNEO: Hillgrove

Hillgrove 31.961t Au, 108975t Sb, 2037t W

Orogenic Au-Sb training o deposits

Name	Metal District	Commodity Major	Nam
All Nations gold mine	Bingara Gold Field	Au	
Heffernans deposit	Bingara Gold Field	Au	Bake
Spring Creek Cinnabar mine	Bingara Gold Field	Hg	Brac
Kanaka Reef	Nundle Gold field	Au	Clark
Marquis Of Lorne	Nundle Gold field	Au	Hiller
Opossum Reef	Nundle Gold field	Au	Hillg
Zwers Scheelite Mine	Nundle Gold field	W (Sb)	Solfe
Fullers Reef	Upper Hunter	Au	Garil
Hidden Treasure Reef	Upper Hunter	Au	Mag
Scotchmans Reef	Upper Hunter	Au	_
Standard Reef	Upper Hunter	Au (Ag)	The l
Beacon Group	Coramba-Orara	Au	Baxt
Red Flag Mine	Crow Mountain	Au	Puck
Taylors deposit	Dalmorton	Au	Man
Tower Hill	Dalmorton	Au	Man
Pine Creek lode	Dalmorton	Au (Ag, Fe)	Wild

У	Name	Metal District	Commodity Major
	Bakers Creek Mine	Hillgrove	Au (Sb)
	Brackins Spur	Hillgrove	Au, Sb (W)
	Clarks Gully prospect	Hillgrove	Au, Sb (W)
	Hillgrove mine	Hillgrove	Au, Sb (W)
	Solferino reef	not assigned	Au
	Garibaldi mine	not assigned	Au, calcite (Ag)
	Magword Sb Mine	not assigned	Sb
	The Burnt Down	not assigned	Sb
	Baxters Mine	not assigned	Sb (Au, Bi, Ag)
	Pucka antimony deposit	not assigned	Sb (W)
	Manusus prospect	Taylors Arm	Sb, Au
	Wild Cattle Creek Sb	Wild Cattle Creek	Sb, Au (Hg, W)

0

Orogenic Au-Sb: final predictive maps

Knox-Robinson & Wyborn 1997

Q

Orogenic Au-Sb: Results

- Prospective areas are defined as having a post probability higher than the prior probability (0.000236)
- Prospective area covers 4.5% of the study area
- Success rate = 97.6
- 2 training points are below the prior probability
- 26 training points fall above the prior probability (lowest post probability is 0.00073)
- 20 training points fall in the highly prospective area (above 0.94117671) that covers 0.5% of the study area

Comparison:

EL heat map vs mineral potential

EL Heat map Orogenic Au-Sb

IR Sn-W

IR Au

Current ELs

Final model results: What are the odds?

The odds of randomly			IR Sn-W	IR Au	Orogenic Au-Sb
finding a unit cell that contains the training site		Prior Probability	0.0001	0.0001	0.0024
The odds of finding the		Post Probability (highly-prospective)	0.7366	0.9373	0.9412
training sites using the model		Prospective area (highly-prospective)	6% (1.2%)	8% (1.4%)	4.5% (0.5%)
		Efficiency	99.5%	99.5%	97.6%
How well the training sites are classified by the model		7	Liston Denoco Bonoco Morenze Parlour Mite Ut Duval	Terterfield Bolivia Range Bolivia Range Bolivia Range Chinesgate Red Range Coban River	Bingare Coramba-Orana Coramba-Orana Coramba-Orana
Planning & Environment		cive	N	ctive brain the second se	cive km Upper Hunter

Where next?

- Zone 54:
 - $_{\circ}\,$ Broken Hill Type
 - \circ IOCG
 - $_{\circ}$ VAMS
 - $_{\circ}\,$ Orogenic gold
- Other commodities
- Online version
- 3D mineral potential

Conclusions: who should use these maps?

Geological Survey:

- Provide simple yet robust predictive maps to inform land-use planning
- Distil mineral system knowledge, expressed spatially
- Improve data quality- shows data gaps (quality and coverage)

Explorers:

- Who are new to the province
- Who want to test new ideas

Where do ya geddit? DiGS Mineral System models: IR Sn-W GS2017/0617 IR Au GS2017/0618 **New England** Orogenic Au-Sb GS2017/0619 750k **Metallogenic Project Report:** coming soon GS2017/0619 Data Package: https://search.geoscience.nsw.gov.au/product/9222

Or use search term "southern new" in DIGS (publications)

References

- EC Andrews, 1916. The Molybdenum Industry in NSW. Mineral Resources 24.
- David I. Groves, Richard J. Goldfarb, François Robert, Craig J. R. Hart, 2003. Gold Deposits in Metamorphic Belts: Overview of Current Understanding, Outstanding Problems, Future Research, and Exploration Significance DOI: 10.2113/gsecongeo.98.1.1 Published on January 2003, First Published on January 01, 2003
- I. Haapala, S. Frindt, J. Kandara, 2007. Cretaceous Gross Spitzkoppe and Klein Spitzkoppe stocks in Namibia: Topaz-bearing A-type granites related to continental rifting and mantle plume; Lithos 97 (2007) 174–192
- Hooper, B & Ashley, Paul & Shields, P. (2007). The Hillgrove Gold-Antimony-Tungsten District, NSW, Australia. Lewis P.C. (ed.), Mines and Wines 2007
- Knox-Robinson, C M and Wyborn, L A I, 1997. Towards a holistic exploration strategy: Using Geographic Information Systems as a tool to enhance exploration, Australian Journal of Earth Sciences, 44:4, 453-463.
- Mustard, R., Nielsen, R. and Ruxton, P. A., 1998. Timbarra gold deposits, In: D A Berkman and D H Mackenzie, eds, Geology of Australian and Papua New Guinean Mineral Deposits. pp 551–560 (The Australasian Institute of Mining and Metallurgy: Melbourne).
- Mustard, R. 2004. Textural, mineralogical and geochemical variation in the zoned Timbarra Tablelands pluton, New South Wales. Australian Journal of Earth Sciences, 51.
- Greg Partington, Roger Mustard. Glen Little and Chris Bowden, 2007. PROSPECTIVITY OF THE GLEN INNES REGION, NEW TECHNIQUES, NEW MINERAL SYSTEMS AND NEW IDEAS. Lewis P.C. (ed.), Mines and Wines 2007

