

Isotopes and geochronology: Mapping domains, fertility and mineral systems at orogen, region, and district scales

Kathryn Waltenberg¹, Janne Liebmann², Sharon Jones¹, David Mole¹, Chris Kirkland², Svetlana Tessalina², Bryant Ware², David Huston¹, David Champion¹, Simon Bodorkos¹, Geoff Fraser¹.

GEOSCIENCE AUSTRALIA

© Commonwealth of Australia (Geoscience Australia) 2021

Radiogenic Isotope Geochemistry 101

Applies isotopes to understanding development of chemical reservoirs and their interactions *through time*

Examples:

- \Rightarrow Formation of the crust
- \Rightarrow Addition of new material from mantle to crust
- ⇒ Origin of fluids that generate ore deposits

MANTLE

sediments

(Radiogenic) Geochronology & Isotope Geochemistry: two sides of the same coin

- Often measure the same isotopes, on the same equipment
- Geochronology radiogenic isotopes give the age
- Isotope geochemistry time-calibrated geochemical (isotopic) data
- eg. U-Pb geochronology and Pb-Pb isotope geochemistry use the same isotopes – but applied in different ways

So what?

GEOSCIENCE AUSTRALIA Commonwealth of Australia (Geoscience Australia) 2021

Exploration challenges

- Deposits are hard to find, particularly as we explore under cover
- Geophysics = backbone of exploration (but snapshot of modern-day)
- We need a diversity of tools and approaches

© Commonwealth of Australia (Geoscience Australia) 2021

Radiogenic Isotopes Applied to Mineral Prospectivity

Empirical

- determine age of known deposits
- look for more in similar aged rocks

- understand favourable tectonic
 "ingredients"
- reconstruct past tectonic history
- predict favourable time and place for undiscovered deposits

Conceptual

Why should you care?

 Mineral deposits are formed by processes operating over various spatial scales and timeframes

 Isotopes can help at most of these scales

Hagemann et al 2016 doi: 10.1016/j.oregeorev.2015.12.012

Craton-scale: Nd-isotopes

Champion 2013. doi: 10.11636/Record.2013.044

© Commonwealth of Australia (Geoscience Australia) 2021

Nickel mineralisation

- Ni deposits in Kalgoorlie Terrane, Yilgarn Craton in Western Australia
- hosted in rocks from the mantle (komatiites) (Barnes & Fiorentini, 2010)
- Map: age of lower crust from Sm-Nd isotope analyses on granites: old in the west, younger in the east
- Ni deposits align with isotopic boundary
- Understand why deposits develop
- Predict location of undiscovered deposits

Deposit-scale: Pb-isotopes in ores

Zeehan field, Tasmania: geology

- Historical silver mining
- Current tin exploration

Isotopes for mineral systems and exploration: Discoveries in the Tasmanides 2022

GEOSCIENCE AUSTRALIA

Deposit-scale: Pb-isotopes in ores

Zeehan field, Tasmania: Pb-isotopes

 Spatial variations in Pb-isotopes correlate with location of buried Heemskirk Granite

Problems with isotopes in exploration & mining

- Data is hard to access
- High bar for non-experts
- Needs baseline datasets for context
- Not enough discovery examples (relative to potential)

What's the plan?

Geophysics – converting data to maps

Isotopes for mineral systems and exploration: Discoveries in the Tasmanides 2022

GEOSCIENCE AUSTRALIA

(Geoscience Australia) 2021

Creating accessible geoscience data is complex – but it can be done

Slide courtesy Phillip Wynne (GA)

Isotope Geochemistry – converting data to maps Sm147Nd1Nd143_14 Err143_14 Std_nNd1 Std_LaJol Std_BCR1 Isot_ComrNd143_14 Eps_Nd TDM TDM_Err T2DM Sm ppm Nd ppm Eps Err 0 0.51186 0.512638 University 0.512155 2.52 10.24 0.1488 0.512143 20 1.29 7.1 0.11 0.511491 30 0 0.511836 0 low value 0.511527 8.03 43.17 0.1124 0.511457 20 0 0.51186 0 University 0.511469 5.851 30.182 0.117 0.511538 20 0 0.51186 0 0.51155 16.413 88.3 0.112 0.51151 20 0 0.51186 0 0.511522 5.973 27.8 0.13 0.511663 20 0 0.51186 0 0.511675 11.006 70.046 0.095 0.511346 20 0.51186 0.511358 0 0 3.378 14.534 0.14 0.51187 20 0.51186 0 0.511882 0 NORTH 3.478 11.817 0.178 0.512428 20 0 0.51186 0 0.51244 AUSTRALIA EL EMENT 3.9 21.7 0.1083 0.51071 20 0 0 corrected 0.511525 0 12 60 0.1205 0.51074 20 0 0 0 corrected 0.511555 5.9 29.4 0.122 0.51123 5 0 0 0.512638 assumed t 0.511245 8.6 0.1047 0.51113 30 0 0 0.512638 assumed t 0.511145 49.4 CENTRAL 2 14.3 0.0841 0.5112 10 0 0.511845 0 University 0.51122 AUSTRALIA ELEMENT 6.6 41.3 0.096 0.51077 7 0 0 0.512638 assumed t 0.51078 3.8 0.51082 0 0 0.512638 assumed t 0.51083 24 0.098 1 6.2 35.6 0.51096 30 0 0.512638 assumed t 0.51097 0.1 0 7.9 41.3 0.12 0.51123 30 0 0 0.512638 assumed t 0.51124 9.9 53.1 0.112 0.51106 8 0 0 0.512638 assumed t 0.51107 6.5 0.1267 0.51136 0 0.512638 assumed t 0.51137 31.1 30 0 SOUTH AUSTRALIA 0.1899 0.51197 30 0 0.511842 0.512638 University 0.51198 0 0 CENTRAL ELEMENT AUSTRALIA 0.1591 0.512346 0 0 20 0 0.51186 0 University 0.51235 ELEMENT 0 0 0.1183 0.512262 20 0 0.51186 0 University 0.512274 PINJARRA 8.67 44.74 0.1172 0.511193 34 0 0 0 corrected 0.512008 ELEMENT WEST 12 70.13 0.1034 0.511111 28 0 0 0 corrected 0.511926 AUSTRALIA ELEMENT 4.6 19.19 0.143572 0.512018 30 0 0.51186 0 no analyti 0.51203

0 La Trobe L 0.512654

0 University 0.51296

0 La Trobe L 0.512739

0 La Trobe L 0.512811

0 La Trobe L 0.512638

0 University 0.512396

0 University 0.512301

0 University 0.512395

0.51128

0.510216

Nd Map of Australia

20

20

20

20

20

20

20

20

6

20

0 0.51186

0

0

0

0 0.51186

0

0

0 0.51186

0 0.51186

0 0.51186

0.51186

0.51186

0.51186

5.51

4.58

5.59

3.3

4.27

6.82

5.95

5.51

2.615

7

32.05

21.98

26.25

13.92

20.14

25.83

23.18

18.7

14.79

43

0.1039 0.512642

0.1289 0.512727

0.1432 0.512799

0.1281 0.512626

0.1596 0.512384

0.1553 0.512289

0.1784 0.512383

0.10685 0.51128

0.098 0.510193

0.126 0.512948

© Commonwealth of Australia (Geoscience Australia) 2021

0 0.51263

Isotopes for mineral systems and exploration: Discoveries in the Tasmanides 2022

800 km

TASMAN

ELEMENT

TASMAN

ELEMENT

Problems with isotopes in exploration & mining

- Data is hard to access
- High bar for non-experts
- Needs baseline datasets for context
- Not enough discovery examples (relative to potential)

Part I: increase access to data & knowledge

portal.ga.gov.au/persona/geochronology

© Commonwealth of Australia (Geoscience Australia) 2021

Geochronology and Isotopes Data Portal

portal.ga.gov.au/persona/geochronology

© Commonwealth of Australia (Geoscience Australia) 2021

New GA-GSV geochronology compilation for Victoria

Available via portal.ga.gov.au & doi: 10.11636/Record.2021.024

(Geoscience Australia) 2021

Next: GA/MRT geochronology compilation for Tasmania

Dark red = old (c. preCam.), pink = c. Cam-Sil, white = young (Cen.)

e 0

© Commonwealth of Australia

(Geoscience Australia) 2021

GEOSCIENCE AUSTRALIA

Isotopes in economic geology, metallogenesis and exploration Huston, D.L., and Gutzmer, J., eds Coming in 2022

Part I – Radiogenic isotopes – age of mineralisation

- Overview, U-Pb, Re-Os & Pt-Os
- Part II Radiogenic isotopes crustal and metallogenic mapping
- Sm-Nd, Pb-Pb, Lu-Hf

Part III – Light stable isotopes

• H, B, C, N, O, Si, S

Part IV – Metallic stable isotopes

• Iron, copper, zinc

Problems with isotopes in exploration & mining

- Data is hard to access
- High bar for non-experts
- Needs baseline datasets for context
- Not enough discovery examples (relative to potential)

Part II: more baseline datasets

John de Laeter Centre

TIMESCALES OF MINERAL SYSTEMS

LIMA – Project motivation

LIMA: Baseline data from basement rocks

- Give context for ore + water + soil data
- Map structures and terranes
- Can Pb-isotopes be used for pathfinding?
- Can you explore using Pbisotopes in basement?
- Can reliable datasets be collected quicker and cheaper?

Map: Pb-isotopes in ore: Tasman Element

Pb in basement

- 43 samples so far
- Feldspar LA-ICPMS + Whole rock TIMS = similar results
- Initial results make sense
 but lots of geological gaps

What we're doing

- ✓ Making it easier to access data
- ✓ Reducing barriers to isotopic understanding
- ✓ Providing baseline datasets
- What I hope to be talking about next time: discovery examples

Hagemann et al 2016 doi: 10.1016/j.oregeorev.2015.12.012

Links to isotope compilations are in the extended abstract volume

Thanks to all the geological surveys for their data custodianship and collaboration

Thanks to the isotope geochemists and geochronologists – we stand on your shoulders

Web: www.ga.gov.au Email: Kathryn.Waltenberg@ga.gov.au