Mineral systems in convergent margin settings – Opportunities for discovery in the Tasmanides

> Domeyko Cordillera, northern Chile – home to the world's largest porphyry copper province - Recent volcanoes of the Principal Cordillera in the background define the location of the current volcanic arc

David R Cooke

CODES

Scope of this presentation

- Overview of mineral systems that form in convergent margin settings around the Pacific rim
- Emphasis on porphyry mineral systems
 - Porphyry copper gold molybdenum
 - High sulfidation epithermal gold
 - Intermediate sulfidation epithermal gold
 - Skarn deposits
- Illustrate some variations on a theme that relate to local environments
 - Is there potential for similar discoveries in the Tasmanides?

Multiple generations of hydrothermal alteration (potassic, phyllic and intermediate argillic alteration) in granodiorite porphyry, Highland Valley porphyry Cu-Au deposit, British Columbia

The porphyry Cu system model

- Porphyry magmas partial melting of metasomatized mantle wedge
- Oxidised, hydrous magmas that can transport metals and sulfur
- Establishment of a mid to upper crustal magma chamber
- Shutdown of volcanism
- Fractional crystallisation and volatile exsolution
- Mineralisation and alteration

Reproduced from Richards (2011)

Lithocap (pyrite-rich stratabound domains of advanced argillic and residual silicic alteration: chargeability high, magnetic low; silicic zone may define a resistivity high)

Siliciclastic and carbonate host rocks

Volcanic, volcaniclastic and intrusive host rocks

Porphyry districts

Volcanic- and sediment-hosted

The centres of porphyry deposits

Multi-phase intrusive complexes and vein stockworks

Christmas porphyry Cu-Mo deposit, Arizona

Intrusive rock types

Central domains Biotite and/or orthoclase alteration

Selectively pervasive biotite alteration, Ampucao

Orthoclase alteration and quartz vein stockwork, Cerro Casale, Chile

Orthoclase-altered diorite, Boyongan

Distal alteration – protolith-dependent

Lithocap (pyrite-rich stratabound domains of advanced argillic and residual silicic alteration: chargeability high, magnetic low; silicic zone may define a resistivity high)

Siliciclastic and carbonate host rocks

Volcanic, volcaniclastic and intrusive host rocks

Porphyry districts

Volcanic- and sediment-hosted

Timing of porphyry mineralisation

Mineralised potassic alteration

Boyongan Cu-Au porphyry, Philippines

Mineralised phyllic alteration Rio Blanco, Chile

Lithocaps and high sulfidation epithermal deposits

What are lithocaps?

- Large domains of hypogene pyritic silicic and advanced argillic alteration
 - They can be more than 10 km long and 1 km thick
- They are related to degassing of shallowcrustal hydrous magmas
- They define the main outflow zone between the hydrous intrusion and the paleosurface
- They may host HS epithermal deposits and overlie porphyry deposits

Lithocaps

Lithocap (pyrite-rich stratabound domains of advanced argillic and residual silicic alteration: chargeability high, magnetic low; silicic zone may define a resistivity high)

C[®]**DES**

← The White Rock Environment → Siliciclastic and carbonate host rocks

The Green Rock Environment

Volcanic. volcaniclastic and intrusive host rocks

Ar-Ar dating; fluid inclusions; isotopes

Lepanto - Far Southeast, Philippines

~1 Mt Cu, 4 Moz Au and 5 Mt Cu, 20 Moz Au

- Upward flare of leaching due to cooling
- Hydraulic gradient causes offset of lithocap from causative intrusion
- Asymmetric alteration zonation likely the <u>rule</u> rather than exception

Lithocaps and HS deposits

Acid-leached zone with limonite staining and native

Disseminated Au – Ag

Colquijirca, Peru

Geology

Bedrock Geology (pre-Quaternary)

Marcapunta Diatreme and Dome Complex (Miocene)

Calera Member Limestones

Shuco Conglomerate

Pocobamba Fm (Eocene)

Pucara Group limestones and dolostones (Upper Triassic – Lower Jurassic)

Mitu Group redbeds, sandstones (Permian-Triassic)

Mineralisation

Vuggy quartz – alunite – dickite – kaolinite (pyrophyllite-zunyite-illite)

Enargite – pyrite - alunite (Cu ± Au)

Pyrite – chalcopyrite – tennantite – bornite -dickite - kaolinite (± alunite - Bi-sulfosalts)

Pyrite – sphalerite – galena – kaolinite – dickite (± alunite – siderite – ankerite – hematite)

Covellite – gold mineralisation, Vuggy quartz, Marcapunta

Modified after Benedezu and Fontboté (2003)

Colquijirca: N-S Cross-section

Geochronology from Benedezú et al. (2003)

Colquijirca, Peru – Metal zoning

Plan view (pierce points – best drill hole intercepts)

Ν

Smelte

Lithocap (pyrite-rich stratabound domains of advanced argillic and residual silicic alteration: chargeability high, magnetic low; silicic zone may define a resistivity high)

- al

prl - dk

muscovite

phengite

The Lithocap Environment

gz - kl

Manto

(distal stratabound carbonate

replacement Zn-Pb-Ag)

Enargite-rich high-sulfidation

mineralization (Fault-hosted and/or stratabound Cu-Au-As, potential EM anomaly)

> Propylitic halo (chlorite sub-zone)

- Intermediate sulfidation veins (Fault-hosted quartz-carbonatepyrite-gold vein, Au-Ag-Zn-Pb-Te)

 Pyrite halo (root zones of lithocap, chargeability high, Zn-Pb-Mn geochemical halo)

qz - kl

Propylitic halo (actinolite sub-zone) Propylitic halo – (epidote sub-zone)

Potassic core (magnetic high or low, Cu-Au-Mo geochemical anomaly)

500 m

The Green Rock Environment

Volcanic, volcaniclastic and intrusive host rocks

IS-LS epithermal deposits

Sierra Oro IS Au-Ag deposit, Philippines

The White Rock Environment

Skarn

(proximal Fe-Cu-Au)

Siliciclastic and carbonate host rocks

Intermediate and low sulfidation epithermal deposits

Yueyang IS epithermal Ag breccia vein, Zijinshan, China

Epithermal model for LS veins – modified from Buchanan (1981)

Reaction skarns

Thermal metamorphism – local chemical mass transfer across bedding planes

Retrograde skarns

Lower-T alteration and mineralisation

Massive epidote skarn cut by calcite veins with chrysocolla coatings, Yerington, Nevada

C 🕲 DES Massive pyrrhotite – cassiterite replacement of dolomite, Renison Bell Sn mine, Tasmania

Las Bambas Cu skarn district, Peru

Ferrobamba, Chalcobamba, and Sulfobamba

C[®]**DES**

Figure courtesy of Amos Garay

Chalcobamba

Chalcobamba

Wine and all

Retrograde skarn

Magnetite – garnet skarn and marble, Chalcobamba

Chalcobamba Late-stage chalcopyrite

- Sulfides commonly have a late timing in skarn deposits
 - Void fill, veins and replacements

C[®]**DES**

Photos courtesy of Amos Garay

l cm

Opportunities for discovery in the Tasmanides

All elements of the porphyry mineral system are viable targets for exploration

Trundle Park

Vuggy quartz, Tujuh Bukit, Indonesia (photo courtesy of Lejun Zhang)

Conclusions and exploration implications

- Porphyry mineral systems typify oceanic island arcs and continental arcs around the Pacific Rim
 - They are mostly subduction-related
 - Alkalic porphyries may form in post-collisional environments
- Arc segments in the Tasmanides (e.g., Macquarie Arc) are prospective for porphyry, epithermal and skarn deposits
 - Porphyry deposits require oxidized hydrous magmas
 - HS and IS epithermal deposits form in the shallowest parts of magmatic arcs and can be eroded soon after formation
 - Skarns and carbonate replacement deposits require reactive protoliths (limestones, ultramafic rocks) but can have a greater diversity of metal endowment and magma associations
 - Carbonate-hosted HS deposits are an attractive exploration target yet to be discovered in the Tasmanides