

National Drilling Initiative - MinEx

John Davidson GSNSW, Manager Projects & Acquisition

November 2024

Contents

1. Mapping

- Canbelego
- Gundabooka
- South Cobar
- 2. Cobar drillhole database
- 3. Seismic & 3D modelling
- 4. Drillhole target selection
- 5. New statewide gravity

Geological overview

- Region multiply deformed by the • Benambran and Tabberabberan orogenies (and younger events)
- Region contains polymetallic mineral ٠ systems + provides context for NSW's premier mineral province, the Macquarie Arc
- Seismic transects across centralwestern Lachlan Orogen (mostly Ordovician to Devonian rocks)

Evolution: Pre-Benambran Orogeny (ca Late Ordovician) and present day timesteps

Mt Isa

THOMSON

estern margin of the Tasmanides Boundary of

20°S

Geological overview

Regional Characteristics

- Extensive Cenozoic sediment cover challenges our understanding of economic basement geology
- Basement outcrop is dispersed and often deeply weathered
- Seismic provides:
 - a means to see through the cover
 - subsurface context for surface observations
 - a crustal-scale tie between geological regions (Hermidale Terrane, Cobar Basin and Western Devonian Basins)

31°0′S 32°0'S 33°0'S 145°0' **MinView** Seamless Surface Geology

Geological overview

Solid Geology: Girilambone Group

10 km

Time-space plot

Courtesy of Mark Eastlake - modified from Burton et al. (2012)

Mapping

Canbelego mapping

Existing solid geology

New solid geology

Canbelego Outcomes

Existing solid geology

Time-space plot modified from Burton et al. (2012)

- Shows the distribution of stratigraphy is strongly influenced by two distinct fold-styles
 - Benambran: <u>large-scale</u>, long wavelength, high amplitude folds affecting the distribution of the Girilambone Group
 - Tabberabberan: <u>small-scale</u>, shorter wavelength and lower amplitude folds most influential on the Cobar Supergroup
- New apatite age of 506.3 ± 8.8 Ma obtained from metagabbro in the Narrama Formation
 - suggests deposition of the Girilambone Group commenced in the Cambrian
 - supports development of a <u>large-scale fold</u> <u>geometry</u> in the Girilambone Group during the <u>Benambran Orogeny</u>
 - consistent with crustal architecture imaged by the Cobar–Yathong seismic survey

New solid geology

South Cobar Outcomes

- Upgrade of data and mapping
 - (307 new field observations, NSW Seamless Geology update and report)
- The Marobee Conglomerate continues to be • considered to be very probably Ordovician in age
- The Ural Volcanics were proven to be temporal • equivalents (latest Silurian to earliest Devonian) of the Mount Hope Group volcanics
- An outlier at Kilparney hill provides evidence the Mulga Downs Group probably extended across the Mt Hope Trough
- The siltstone sequence below Kilparney hill while consistent with Walters Range Group could also be Amphitheatre Group. The latter would call into question the nature of the Walters Range Block.

Gunderbooka Outcomes

- Upgrade of data and mapping (776 new field observations, NSW Seamless Geology update and report)
- Discovered an area of previously unmapped Cobar Supergroup around The Big Dam
- Confirmed that the conglomerates at the Merrere hills are Cobar Supergroup (not part of the Girilambone Group)
- Possibility that the Cobar Supergroup sequence under Mount Gunderbooka extends from basal conglomerate through to the overlying Mulga Downs Group
- Potential for further unrecognised Cobar Supergroup between The Big Dam and Gunderbooka areas

NSW Resources

Cobar drillhole database

Cobar drillhole database

12

Cobar drillhole database

NSW Resources

Seismic

Seismic acquisition: then and now

	1989 Cobar Basin	23NSW-Cobar-Yathong
Acquisition company	BMR	Velseis
Survey line length	184 km	506 km
Source	10 kg explosives (40 m shothole)	Vibroseis x 2
Source point interval	360 m	20 m
Receivers	String	Nodes
Receiver spacing	60 m	10 m
Receiver spread	~3 km	~12 km
Record length	20 s	16 s
CDP fold	8	600

Source: processing reports

Interpretation

- Seismic domains characterised with consideration of legacy geological and geophysical data
- Interpretation hierarchy: hard constraints >> soft constraints
- Key seismic reflectors and characterised seismic domains form the basis for interpretation in poorly-imaged and thus higher-uncertainty areas

Looking towards NW

ENE

17

C = Cambrian

Seismic section CY1 showing key seismic reflectors (coloured) and seismic domains (labelled)

Interpretation — key features

- Overall structural style: west-verging, thick-skinned orogenic wedge/fold and thrust belt
- Continental/transitional crust in west buttressing westward shortening (?) causing obduction (and under thrusting/minor subduction) of oceanic crust
- At least two distinct structural styles/fold wavelengths
- Cross-cutting relationships evident, however these complex interactions are poorly-imaged and therefore difficult to interpret

Looking towards NW

Interpretation — 3D validity

Stratigraphic Legend

Mulga Downs Group (D) Cobar Supergroup (S-D) Granite (undiff.) (S-D) Ballast Fm – Girilambone Group (C-O) Girilambone/Adaminaby Group (undiff.) (C-O) Oceanic crust? (C) Continental/transitional crust (C?)

Structural Styles

Deeper crustal-scale faulting and longer wavelength folding

Shallower closer-spaced faulting

• CY2 = 115 km

• CY3 = 158 km

Interpretation — key features

- Overall structural style: west-verging, thick-skinned orogenic wedge/fold and thrust belt
- Continental/transitional crust in west buttressing westward shortening (?) causing obduction (and under thrusting/minor subduction) of oceanic crust
- At least two distinct structural styles/fold wavelengths
- Cross-cutting relationships evident, however these complex interactions are poorly-imaged and therefore difficult to interpret

Mulga Downs Group (D) Hermidale Terran Cobar Supergroup (S-D) Granite (undiff.) (S-D) Black boxes = outcropping geology GSNSW Surface Geology (hard constraints) Ballast Fm – Girilambone Group (C-O) Girilambone/Adaminaby Group (undiff.) (C-O) **GSNSW Basement Geology** (soft constraints) Oceanic crust? (C) Continental/transitional crust (C?) 🛠 Mt Boppy Moho Rookery Fault Zone Coonara Fault Zone Muriel Fault Zone D = Devonian S = Silurian O = Ordovician Seismic section CY1 showing key seismic reflectors (coloured) and final interpretation 20

Looking towards NW

Stratigraphic Legend

C = Cambrian

Schematic geological evolution

 $\overline{\mathbf{U}}$

~Cambrian to Middle Ordovician – Benambran Extension gover

- Back-arc extension and widespread turbidite deposition over attenuated Delamerian margin and Cambrian oceanic crust
- Emplacement of syngenetic mineral deposits of the Hermidale
- ~Late Ordovician to early Silurian Benambran Collision
- ~40% shortening by thick-skinned faulting and long
- Significant uplift of Canbelego area

~Late Silurian to Late Devonian – Tabberabberan Extension

Formation of Cobar Basin and emplacement of syngenetic mineral

Extension and/or widespread subsidence and formation of Western

~Early-Late Devonian — Tabberabberan Collision (timestep as represented here may also include deformation attributable to Kanimblan and younger events)

ng, reactivation of pre-existing Benambran structures and hallowly detached thrust faults and shorter wavelength

bar Basin and emplacement of epigenetic mineral deposits

d by new Cobar-Yathong seismic and legacy datasets

Seismic Reprocessing — line CY1

Seismic Reprocessing — line CY1

Original PSTM processing

Reprocessed seismic interpretation — **Cobar Basin**

Depth converted TBI reprocessed seismic (line CY1)

Reprocessed seismic interpretation – Cobar Basin

NSW Resources

4

Drillhole target selection

NDI Cobar drillhole targets

→ Deep holes to investigate internal stratigraphy & structure
± basement of mineralised Cobar Basin and Hermidale
Terrane. All along deep crustal seismic lines.

1. Currawatha-Bundycoola Anticline

→ Deep drillhole in the western Cobar Basin targeting lower basin stratigraphy and basement rocks uplifted in the 'Currawatha-Bundycoola Anticline'

2. Nullawarra Anticline

→ Deep drillhole in the central-western Cobar Basin targeting lower basin stratigraphy and basement rocks uplifted in the Nullawarra Anticline

3. Western Anticline

 \rightarrow Deep drillhole in the eastern Cobar Basin targeting lower basin stratigraphy and basement rocks uplifted in the 'Western Anticline'

4. Ballast Formation

→ Deep drillhole in the Hermidale Terrane to investigate the internal stratigraphy of the Cambro-Ordovician Girilambone Formation

5. Walters Range

 \rightarrow Deep drillhole in the southern Cobar Basin to characterise the nature of the Walters Range 'block'

'Wooltrack' drillhole targets

NDI Cobar drillhole targets

→ Deep holes to investigate internal stratigraphy & structure
± basement of mineralised Cobar Basin and Hermidale
Terrane. All along deep crustal seismic lines.

1. Currawatha-Bundycoola Anticline

→ Deep drillhole in the western Cobar Basin targeting lower basin stratigraphy and basement rocks uplifted in the 'Currawatha-Bundycoola Anticline'

2. Nullawarra Anticline

→ Deep drillhole in the central-western Cobar Basin targeting lower basin stratigraphy and basement rocks uplifted in the Nullawarra Anticline

3. Western Anticline

 \rightarrow Deep drillhole in the eastern Cobar Basin targeting lower basin stratigraphy and basement rocks uplifted in the 'Western Anticline'

4. Ballast Formation

→ Deep drillhole in the Hermidale Terrane to investigate the internal stratigraphy of the Cambro-Ordovician Girilambone Formation

5. Walters Range

 \rightarrow Deep drillhole in the southern Cobar Basin to characterise the nature of the Walters Range 'block'

NSW Resources

New statewide gravity

New statewide gravity coverage

Ground gravity station coverage (left) compared to airborne gravity coverage (right).

New statewide gravity images

2020 isostatically corrected Bouguer gravity (left) compared to the 2024 composite update (right).

